BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34019870)

  • 1. O-GlcNAc modification of MYPT1 modulates lysophosphatidic acid-induced cell contraction in fibroblasts.
    Morales MM; Pedowitz NJ; Pratt MR
    J Biol Chem; 2021; 296():100800. PubMed ID: 34019870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MYPT1 O-GlcNAc modification regulates sphingosine-1-phosphate mediated contraction.
    Pedowitz NJ; Batt AR; Darabedian N; Pratt MR
    Nat Chem Biol; 2021 Feb; 17(2):169-177. PubMed ID: 32929277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 2D and 3D cell culture protocol to study O-GlcNAc in sphingosine-1-phosphate mediated fibroblast contraction.
    Morales MM; Pedowitz NJ; Pratt MR
    STAR Protoc; 2022 Mar; 3(1):101113. PubMed ID: 35118425
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Liu C; Shi Y; Li J; Liu X; Xiahou Z; Tan Z; Chen X; Li J
    J Biol Chem; 2020 May; 295(21):7341-7349. PubMed ID: 32295844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes.
    Vosseller K; Wells L; Lane MD; Hart GW
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5313-8. PubMed ID: 11959983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A genetic model to study
    St Amand MM; Bond MR; Riedy J; Comly M; Shiloach J; Hanover JA
    J Biol Chem; 2018 Aug; 293(35):13673-13681. PubMed ID: 29954943
    [No Abstract]   [Full Text] [Related]  

  • 7. O-GlcNAcylation regulates lysophosphatidic acid-induced cell migration by regulating ERM family proteins.
    Song M; Suh PG
    FEBS Open Bio; 2022 Jun; 12(6):1220-1229. PubMed ID: 35347892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Role of O-GlcNAc modification of cellular proteins in signal transduction].
    Krześlak A
    Postepy Biochem; 2007; 53(4):389-99. PubMed ID: 19024903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications.
    Wells L; Vosseller K; Cole RN; Cronshaw JM; Matunis MJ; Hart GW
    Mol Cell Proteomics; 2002 Oct; 1(10):791-804. PubMed ID: 12438562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc.
    Wells L; Vosseller K; Hart GW
    Science; 2001 Mar; 291(5512):2376-8. PubMed ID: 11269319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global Analysis of O-GlcNAc Glycoproteins in Activated Human T Cells.
    Lund PJ; Elias JE; Davis MM
    J Immunol; 2016 Oct; 197(8):3086-3098. PubMed ID: 27655845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping of O-linked beta-N-acetylglucosamine modification sites in key contractile proteins of rat skeletal muscle.
    Hédou J; Bastide B; Page A; Michalski JC; Morelle W
    Proteomics; 2009 Apr; 9(8):2139-48. PubMed ID: 19322778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of O-linked N-acetylglucosamine levels on nuclear and cytoplasmic proteins in vivo using the peptide O-GlcNAc-beta-N-acetylglucosaminidase inhibitor O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate.
    Haltiwanger RS; Grove K; Philipsberg GA
    J Biol Chem; 1998 Feb; 273(6):3611-7. PubMed ID: 9452489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of contractile mechanisms of sphingosylphosphorylcholine and sphingosine-1-phosphate in rabbit coronary artery.
    Choi SK; Ahn DS; Lee YH
    Cardiovasc Res; 2009 May; 82(2):324-32. PubMed ID: 19218288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. O-GlcNAc modification of nucleocytoplasmic proteins and diabetes.
    Akimoto Y; Hart GW; Hirano H; Kawakami H
    Med Mol Morphol; 2005 Jun; 38(2):84-91. PubMed ID: 15944815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Urocortin-induced decrease in Ca2+ sensitivity of contraction in mouse tail arteries is attributable to cAMP-dependent dephosphorylation of MYPT1 and activation of myosin light chain phosphatase.
    Lubomirov LT; Reimann K; Metzler D; Hasse V; Stehle R; Ito M; Hartshorne DJ; Gagov H; Pfitzer G; Schubert R
    Circ Res; 2006 May; 98(9):1159-67. PubMed ID: 16574904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytosolic O-glycosylation is abundant in nerve terminals.
    Cole RN; Hart GW
    J Neurochem; 2001 Dec; 79(5):1080-9. PubMed ID: 11739622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological signalling to myosin phosphatase targeting subunit-1 phosphorylation in ileal smooth muscle.
    Gao N; Chang AN; He W; Chen CP; Qiao YN; Zhu M; Kamm KE; Stull JT
    J Physiol; 2016 Jun; 594(12):3209-25. PubMed ID: 26847850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycosylation of the c-Myc transactivation domain.
    Chou TY; Dang CV; Hart GW
    Proc Natl Acad Sci U S A; 1995 May; 92(10):4417-21. PubMed ID: 7753821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hexosamine signaling pathway: deciphering the "O-GlcNAc code".
    Love DC; Hanover JA
    Sci STKE; 2005 Nov; 2005(312):re13. PubMed ID: 16317114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.