These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34019898)

  • 1. Changes in adsorption mechanisms of radioactive barium, cobalt, and strontium ions using spent coffee waste biochars via alkaline chemical activation: Enrichment effects of O-containing functional groups.
    Shin J; Kwak J; Lee YG; Kim S; Son C; Cho KH; Lee SH; Park Y; Ren X; Chon K
    Environ Res; 2021 Aug; 199():111346. PubMed ID: 34019898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and applications of bismuth-impregnated biochars originated from spent coffee grounds for efficient adsorption of radioactive iodine: A mechanism study.
    Kwak J; Lee SH; Shin J; Lee YG; Kim S; Son C; Ren X; Shin JK; Park Y; Chon K
    Environ Pollut; 2022 Nov; 313():120138. PubMed ID: 36089142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of physicochemical properties of biochar derived from spent coffee grounds and commercial activated carbon on adsorption behavior and mechanisms of strontium ions (Sr
    Shin J; Lee SH; Kim S; Ochir D; Park Y; Kim J; Lee YG; Chon K
    Environ Sci Pollut Res Int; 2021 Aug; 28(30):40623-40632. PubMed ID: 32677012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NaOH-assisted H
    Shin J; Choi M; Go CY; Bae S; Kim KC; Chon K
    J Hazard Mater; 2022 Aug; 435():129081. PubMed ID: 35650751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single and competitive adsorptions of micropollutants using pristine and alkali-modified biochars from spent coffee grounds.
    Shin J; Lee YG; Lee SH; Kim S; Ochir D; Park Y; Kim J; Chon K
    J Hazard Mater; 2020 Dec; 400():123102. PubMed ID: 32947732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designer biochar with enhanced functionality for efficient removal of radioactive cesium and strontium from water.
    Palansooriya KN; Yoon IH; Kim SM; Wang CH; Kwon H; Lee SH; Igalavithana AD; Mukhopadhyay R; Sarkar B; Ok YS
    Environ Res; 2022 Nov; 214(Pt 4):114072. PubMed ID: 35987372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competitive adsorption of pharmaceuticals in lake water and wastewater effluent by pristine and NaOH-activated biochars from spent coffee wastes: Contribution of hydrophobic and π-π interactions.
    Shin J; Kwak J; Lee YG; Kim S; Choi M; Bae S; Lee SH; Park Y; Chon K
    Environ Pollut; 2021 Feb; 270():116244. PubMed ID: 33321433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizations of strontium(II) and barium(II) adsorption from aqueous solutions using dolomite powder.
    Ghaemi A; Torab-Mostaedi M; Ghannadi-Maragheh M
    J Hazard Mater; 2011 Jun; 190(1-3):916-21. PubMed ID: 21524844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alkaline Modification of
    Lavado-Meza C; De la Cruz-Cerrón L; Asencios YJO; Marcos FCF; Dávalos-Prado JZ
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks.
    Vithanage M; Mayakaduwa SS; Herath I; Ok YS; Mohan D
    Chemosphere; 2016 May; 150():781-789. PubMed ID: 26607239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the performance and mechanism of cobaltous ion removal from water by a high-efficiency strontium-doped hydroxyapatite adsorbent.
    Zhu Z; Liu S; Zhu Y; He H; Zhang J; Mo X; Tang S; Fan Y; Zhang L; Zhou X
    Environ Sci Pollut Res Int; 2024 Apr; 31(20):30059-30071. PubMed ID: 38594560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced selectivity and recovery of phosphate and nitrate ions onto coffee ground waste biochars via co-precipitation of Mg/Al layered double hydroxides: A potential slow-release fertilizer.
    Shin J; Kwak J; Kim S; Son C; Kang B; Lee YG; Chon K
    Environ Res; 2023 Aug; 231(Pt 3):116266. PubMed ID: 37257744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into chitosan/mesoporous silica nanocomposites as eco-friendly adsorbent for enhanced retention of U (VI) and Sr (II) from aqueous solutions and real water.
    Abukhadra MR; Eid MH; El-Meligy MA; Sharaf M; Soliman AT
    Int J Biol Macromol; 2021 Mar; 173():435-444. PubMed ID: 33493560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of barium and strontium from aqueous solution using zeolite 4A.
    Araissi M; Ayed I; Elaloui E; Moussaoui Y
    Water Sci Technol; 2016; 73(7):1628-36. PubMed ID: 27054734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of Ni(II) ions by magnetic activated carbon/chitosan beads prepared from spent coffee grounds, shrimp shells and green tea extract.
    Le VT; Dao MU; Le HS; Tran DL; Doan VD; Nguyen HT
    Environ Technol; 2020 Sep; 41(21):2817-2832. PubMed ID: 30767655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of Modified Attapulgite for the Removal of Sr(II), Co(II), and Ni(II) Ions from Multicomponent System, Part I: Kinetic Studies.
    Mohammed AA; Abdel Moamen OA; Metwally SS; El-Kamash AM; Ashour I; Al-Geundi MS
    Environ Sci Pollut Res Int; 2020 Mar; 27(7):6824-6836. PubMed ID: 31875294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion exchangers in radioactive waste management. Part XI. Removal of barium and strontium ions from aqueous solutions by hydrous ferric oxide.
    Mishra SP; Tiwary D
    Appl Radiat Isot; 1999 Oct; 51(4):359-66. PubMed ID: 10464913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the effectiveness and mechanisms of acetaminophen and methylene blue dye adsorption on activated biochar derived from municipal solid wastes.
    Sumalinog DAG; Capareda SC; de Luna MDG
    J Environ Manage; 2018 Mar; 210():255-262. PubMed ID: 29367138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of norfloxacin in deionized, municipal water and urine using rice (Oryza sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents.
    Paredes-Laverde M; Silva-Agredo J; Torres-Palma RA
    J Environ Manage; 2018 May; 213():98-108. PubMed ID: 29482094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of element mercury by medicine residue derived biochars in presence of various gas compositions.
    Li G; Shen B; Li Y; Zhao B; Wang F; He C; Wang Y; Zhang M
    J Hazard Mater; 2015 Nov; 298():162-9. PubMed ID: 26051992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.