These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 34019945)

  • 21. Enabling online determination of the size-dependent RNA content of lipid nanoparticle-based RNA formulations.
    Jia X; Liu Y; Wagner AM; Chen M; Zhao Y; Smith KJ; Some D; Abend AM; Pennington J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Dec; 1186():123015. PubMed ID: 34741934
    [TBL] [Abstract][Full Text] [Related]  

  • 22. mRNA-LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells.
    Bevers S; Kooijmans SAA; Van de Velde E; Evers MJW; Seghers S; Gitz-Francois JJJM; van Kronenburg NCH; Fens MHAM; Mastrobattista E; Hassler L; Sork H; Lehto T; Ahmed KE; El Andaloussi S; Fiedler K; Breckpot K; Maes M; Van Hoorick D; Bastogne T; Schiffelers RM; De Koker S
    Mol Ther; 2022 Sep; 30(9):3078-3094. PubMed ID: 35821637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodistribution and Non-linear Gene Expression of mRNA LNPs Affected by Delivery Route and Particle Size.
    Di J; Du Z; Wu K; Jin S; Wang X; Li T; Xu Y
    Pharm Res; 2022 Jan; 39(1):105-114. PubMed ID: 35080707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lipid Nanoparticle Spherical Nucleic Acids for Intracellular DNA and RNA Delivery.
    Sinegra AJ; Evangelopoulos M; Park J; Huang Z; Mirkin CA
    Nano Lett; 2021 Aug; 21(15):6584-6591. PubMed ID: 34286581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of lipid composition of messenger RNA-loaded lipid nanoparticles on the protein expression via intratracheal administration in mice.
    Geng L; Kato N; Kodama Y; Mukai H; Kawakami S
    Int J Pharm; 2023 Apr; 637():122896. PubMed ID: 36972778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery.
    Maeki M; Uno S; Niwa A; Okada Y; Tokeshi M
    J Control Release; 2022 Apr; 344():80-96. PubMed ID: 35183654
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predictive high-throughput screening of PEGylated lipids in oligonucleotide-loaded lipid nanoparticles for neuronal gene silencing.
    Sarode A; Fan Y; Byrnes AE; Hammel M; Hura GL; Fu Y; Kou P; Hu C; Hinz FI; Roberts J; Koenig SG; Nagapudi K; Hoogenraad CC; Chen T; Leung D; Yen CW
    Nanoscale Adv; 2022 May; 4(9):2107-2123. PubMed ID: 36133441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anionic Lipid Nanoparticles Preferentially Deliver mRNA to the Hepatic Reticuloendothelial System.
    Pattipeiluhu R; Arias-Alpizar G; Basha G; Chan KYT; Bussmann J; Sharp TH; Moradi MA; Sommerdijk N; Harris EN; Cullis PR; Kros A; Witzigmann D; Campbell F
    Adv Mater; 2022 Apr; 34(16):e2201095. PubMed ID: 35218106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. mRNAs encoding self-DNA reactive cGAS enhance the immunogenicity of lipid nanoparticle vaccines.
    Zhivaki D; Gosselin EA; Sengupta D; Concepcion H; Arinze C; Chow J; Nikiforov A; Komoroski V; MacFarlane C; Sullivan C; Kagan JC
    mBio; 2023 Dec; 14(6):e0250623. PubMed ID: 37937842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arrayed CRISPR Screening Identifies Novel Targets That Enhance the Productive Delivery of mRNA by MC3-Based Lipid Nanoparticles.
    Ross-Thriepland D; Bornot A; Butler L; Desai A; Jaiswal H; Peel S; Hunter MR; Odunze U; Isherwood B; Gianni D
    SLAS Discov; 2020 Jul; 25(6):605-617. PubMed ID: 32441189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Effect of Size and Charge of Lipid Nanoparticles Prepared by Microfluidic Mixing on Their Lymph Node Transitivity and Distribution.
    Nakamura T; Kawai M; Sato Y; Maeki M; Tokeshi M; Harashima H
    Mol Pharm; 2020 Mar; 17(3):944-953. PubMed ID: 31990567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of lipid nanoparticles for mRNA vaccines by the machine learning algorithm.
    Wang W; Feng S; Ye Z; Gao H; Lin J; Ouyang D
    Acta Pharm Sin B; 2022 Jun; 12(6):2950-2962. PubMed ID: 35755271
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel lipid nanoparticle adjuvant significantly enhances B cell and T cell responses to sub-unit vaccine antigens.
    Swaminathan G; Thoryk EA; Cox KS; Meschino S; Dubey SA; Vora KA; Celano R; Gindy M; Casimiro DR; Bett AJ
    Vaccine; 2016 Jan; 34(1):110-9. PubMed ID: 26555351
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lipid Nanoparticles─From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement.
    Tenchov R; Bird R; Curtze AE; Zhou Q
    ACS Nano; 2021 Nov; 15(11):16982-17015. PubMed ID: 34181394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanistic Studies of an Automated Lipid Nanoparticle Reveal Critical Pharmaceutical Properties Associated with Enhanced mRNA Functional Delivery In Vitro and In Vivo.
    Cui L; Hunter MR; Sonzini S; Pereira S; Romanelli SM; Liu K; Li W; Liang L; Yang B; Mahmoudi N; Desai AS
    Small; 2022 Mar; 18(9):e2105832. PubMed ID: 34914866
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a Microfluidic-Based Post-Treatment Process for Size-Controlled Lipid Nanoparticles and Application to siRNA Delivery.
    Kimura N; Maeki M; Sato Y; Ishida A; Tani H; Harashima H; Tokeshi M
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34011-34020. PubMed ID: 32667806
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration.
    Carrasco MJ; Alishetty S; Alameh MG; Said H; Wright L; Paige M; Soliman O; Weissman D; Cleveland TE; Grishaev A; Buschmann MD
    Commun Biol; 2021 Aug; 4(1):956. PubMed ID: 34381159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunogenicity generated by mRNA vaccine encoding VZV gE antigen is comparable to adjuvanted subunit vaccine and better than live attenuated vaccine in nonhuman primates.
    Monslow MA; Elbashir S; Sullivan NL; Thiriot DS; Ahl P; Smith J; Miller E; Cook J; Cosmi S; Thoryk E; Citron M; Thambi N; Shaw C; Hazuda D; Vora KA
    Vaccine; 2020 Aug; 38(36):5793-5802. PubMed ID: 32703745
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of Lipid Nanoparticles for Intramuscular Administration of mRNA Vaccines.
    Hassett KJ; Benenato KE; Jacquinet E; Lee A; Woods A; Yuzhakov O; Himansu S; Deterling J; Geilich BM; Ketova T; Mihai C; Lynn A; McFadyen I; Moore MJ; Senn JJ; Stanton MG; Almarsson Ö; Ciaramella G; Brito LA
    Mol Ther Nucleic Acids; 2019 Apr; 15():1-11. PubMed ID: 30785039
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lipid Nanoparticles Potentiate CpG-Oligodeoxynucleotide-Based Vaccine for Influenza Virus.
    Shirai S; Shibuya M; Kawai A; Tamiya S; Munakata L; Omata D; Suzuki R; Aoshi T; Yoshioka Y
    Front Immunol; 2019; 10():3018. PubMed ID: 31998305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.