BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 34019948)

  • 1. O-GlcNAc modification regulates MTA1 transcriptional activity during breast cancer cell genotoxic adaptation.
    Xie X; Wu Q; Zhang K; Liu Y; Zhang N; Chen Q; Wang L; Li W; Zhang J; Liu Y
    Biochim Biophys Acta Gen Subj; 2021 Aug; 1865(8):129930. PubMed ID: 34019948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic profiling and genome-wide mapping of O-GlcNAc chromatin-associated proteins reveal an O-GlcNAc-regulated genotoxic stress response.
    Liu Y; Chen Q; Zhang N; Zhang K; Dou T; Cao Y; Liu Y; Li K; Hao X; Xie X; Li W; Ren Y; Zhang J
    Nat Commun; 2020 Nov; 11(1):5898. PubMed ID: 33214551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drosophila O-GlcNAcase Deletion Globally Perturbs Chromatin O-GlcNAcylation.
    Akan I; Love DC; Harwood KR; Bond MR; Hanover JA
    J Biol Chem; 2016 May; 291(19):9906-19. PubMed ID: 26957542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MTA1, a transcriptional activator of breast cancer amplified sequence 3.
    Gururaj AE; Singh RR; Rayala SK; Holm C; den Hollander P; Zhang H; Balasenthil S; Talukder AH; Landberg G; Kumar R
    Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6670-5. PubMed ID: 16617102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreasing O-GlcNAcylation affects the malignant transformation of MCF-7 cells via Hsp27 expression and its O-GlcNAc modification.
    Netsirisawan P; Chaiyawat P; Chokchaichamnankit D; Lirdprapamongkol K; Srisomsap C; Svasti J; Champattanachai V
    Oncol Rep; 2018 Oct; 40(4):2193-2205. PubMed ID: 30106436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1.
    Caldwell SA; Jackson SR; Shahriari KS; Lynch TP; Sethi G; Walker S; Vosseller K; Reginato MJ
    Oncogene; 2010 May; 29(19):2831-42. PubMed ID: 20190804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of transcription factor function by O-GlcNAc modification.
    Ozcan S; Andrali SS; Cantrell JE
    Biochim Biophys Acta; 2010; 1799(5-6):353-64. PubMed ID: 20202486
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Guo H; Zhang B; Nairn AV; Nagy T; Moremen KW; Buckhaults P; Pierce M
    J Biol Chem; 2017 Mar; 292(10):4123-4137. PubMed ID: 28096468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feedback Regulation of
    Lin CH; Liao CC; Chen MY; Chou TY
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33801653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional regulation of
    Qian K; Wang S; Fu M; Zhou J; Singh JP; Li MD; Yang Y; Zhang K; Wu J; Nie Y; Ruan HB; Yang X
    J Biol Chem; 2018 Sep; 293(36):13989-14000. PubMed ID: 30037904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High OGT activity is essential for MYC-driven proliferation of prostate cancer cells.
    Itkonen HM; Urbanucci A; Martin SE; Khan A; Mathelier A; Thiede B; Walker S; Mills IG
    Theranostics; 2019; 9(8):2183-2197. PubMed ID: 31149037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. O-GlcNAc-Dependent Regulation of Progesterone Receptor Function in Breast Cancer.
    Trinca GM; Goodman ML; Papachristou EK; D'Santos CS; Chalise P; Madan R; Slawson C; Hagan CR
    Horm Cancer; 2018 Feb; 9(1):12-21. PubMed ID: 28929346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications.
    Toh Y; Nicolson GL
    Clin Exp Metastasis; 2009; 26(3):215-27. PubMed ID: 19116762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between O-GlcNAc modification and tyrosine phosphorylation of prohibitin: implication for a novel binary switch.
    Ande SR; Moulik S; Mishra S
    PLoS One; 2009; 4(2):e4586. PubMed ID: 19238206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutrient sensor O-GlcNAc transferase controls cancer lipid metabolism via SREBP-1 regulation.
    Sodi VL; Bacigalupa ZA; Ferrer CM; Lee JV; Gocal WA; Mukhopadhyay D; Wellen KE; Ivan M; Reginato MJ
    Oncogene; 2018 Feb; 37(7):924-934. PubMed ID: 29059153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MICoA, a novel metastasis-associated protein 1 (MTA1) interacting protein coactivator, regulates estrogen receptor-alpha transactivation functions.
    Mishra SK; Mazumdar A; Vadlamudi RK; Li F; Wang RA; Yu W; Jordan VC; Santen RJ; Kumar R
    J Biol Chem; 2003 May; 278(21):19209-19. PubMed ID: 12639951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene expression of O-GlcNAc cycling enzymes in human breast cancers.
    Krześlak A; Forma E; Bernaciak M; Romanowicz H; Bryś M
    Clin Exp Med; 2012 Mar; 12(1):61-5. PubMed ID: 21567137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular protein O-GlcNAc modification integrates nutrient status with transcriptional and metabolic regulation.
    Nagel AK; Ball LE
    Adv Cancer Res; 2015; 126():137-66. PubMed ID: 25727147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MTA1 coregulator regulates LDHA expression and function in breast cancer.
    Guddeti RK; Bali P; Karyala P; Pakala SB
    Biochem Biophys Res Commun; 2019 Nov; 520(1):54-59. PubMed ID: 31570164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MTA1 promotes tumorigenesis and development of esophageal squamous cell carcinoma via activating the MEK/ERK/p90RSK signaling pathway.
    Nan P; Wang T; Li C; Li H; Wang J; Zhang J; Dou N; Zhan Q; Ma F; Wang H; Qian H
    Carcinogenesis; 2020 Sep; 41(9):1263-1272. PubMed ID: 31783401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.