BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

588 related articles for article (PubMed ID: 34020078)

  • 1. Feasibility of a generalized convolutional neural network for automated identification of vertebral compression fractures: The Manitoba Bone Mineral Density Registry.
    Monchka BA; Kimelman D; Lix LM; Leslie WD
    Bone; 2021 Sep; 150():116017. PubMed ID: 34020078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a manufacturer-independent convolutional neural network for the automated identification of vertebral compression fractures in vertebral fracture assessment images using active learning.
    Monchka BA; Schousboe JT; Davidson MJ; Kimelman D; Hans D; Raina P; Leslie WD
    Bone; 2022 Aug; 161():116427. PubMed ID: 35489707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Vertebral Fractures by Convolutional Neural Networks to Predict Nonvertebral and Hip Fractures: A Registry-based Cohort Study of Dual X-ray Absorptiometry.
    Derkatch S; Kirby C; Kimelman D; Jozani MJ; Davidson JM; Leslie WD
    Radiology; 2019 Nov; 293(2):405-411. PubMed ID: 31526255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning for automated abdominal aortic calcification scoring of DXA vertebral fracture assessment images: A pilot study.
    Reid S; Schousboe JT; Kimelman D; Monchka BA; Jafari Jozani M; Leslie WD
    Bone; 2021 Jul; 148():115943. PubMed ID: 33836309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.
    Joo MW; Ko T; Kim MS; Lee YS; Shin SH; Chung YG; Lee HK
    Clin Orthop Relat Res; 2023 Nov; 481(11):2247-2256. PubMed ID: 37615504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Differentiation Between Osteoporotic Vertebral Fracture and Malignant Vertebral Fracture on MRI Using a Deep Convolutional Neural Network.
    Yoda T; Maki S; Furuya T; Yokota H; Matsumoto K; Takaoka H; Miyamoto T; Okimatsu S; Shiga Y; Inage K; Orita S; Eguchi Y; Yamashita T; Masuda Y; Uno T; Ohtori S
    Spine (Phila Pa 1976); 2022 Apr; 47(8):E347-E352. PubMed ID: 34919075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm.
    Lee JH; Kim DH; Jeong SN; Choi SH
    J Dent; 2018 Oct; 77():106-111. PubMed ID: 30056118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images.
    Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT
    Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prevalent vertebral fracture on bone density lateral spine (VFA) images in routine clinical practice predict incident fractures.
    Schousboe JT; Lix LM; Morin SN; Derkatch S; Bryanton M; Alhrbi M; Leslie WD
    Bone; 2019 Apr; 121():72-79. PubMed ID: 30634065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoporosis treatment considerations based upon fracture history, fracture risk assessment, vertebral fracture assessment, and bone density in Canada.
    Leslie WD; Lix LM; Binkley N
    Arch Osteoporos; 2020 Jun; 15(1):93. PubMed ID: 32577922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and external validation of automated detection, classification, and localization of ankle fractures: inside the black box of a convolutional neural network (CNN).
    Prijs J; Liao Z; To MS; Verjans J; Jutte PC; Stirler V; Olczak J; Gordon M; Guss D; DiGiovanni CW; Jaarsma RL; IJpma FFA; Doornberg JN;
    Eur J Trauma Emerg Surg; 2023 Apr; 49(2):1057-1069. PubMed ID: 36374292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of densitometric vertebral fracture assessment when performed by DXA technicians--a cross-sectional, multiobserver study.
    Rud B; Vestergaard A; Hyldstrup L
    Osteoporos Int; 2016 Apr; 27(4):1451-1458. PubMed ID: 26556734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is Deep Learning On Par with Human Observers for Detection of Radiographically Visible and Occult Fractures of the Scaphoid?
    Langerhuizen DWG; Bulstra AEJ; Janssen SJ; Ring D; Kerkhoffs GMMJ; Jaarsma RL; Doornberg JN
    Clin Orthop Relat Res; 2020 Nov; 478(11):2653-2659. PubMed ID: 32452927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-Aided Detection of Incidental Lumbar Spine Fractures from Routine Dual-Energy X-Ray Absorptiometry (DEXA) Studies Using a Support Vector Machine (SVM) Classifier.
    Mehta SD; Sebro R
    J Digit Imaging; 2020 Feb; 33(1):204-210. PubMed ID: 31062114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using artificial intelligence to diagnose fresh osteoporotic vertebral fractures on magnetic resonance images.
    Yabu A; Hoshino M; Tabuchi H; Takahashi S; Masumoto H; Akada M; Morita S; Maeno T; Iwamae M; Inose H; Kato T; Yoshii T; Tsujio T; Terai H; Toyoda H; Suzuki A; Tamai K; Ohyama S; Hori Y; Okawa A; Nakamura H
    Spine J; 2021 Oct; 21(10):1652-1658. PubMed ID: 33722728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a multiview architecture for automatic vertebral labeling of palliative radiotherapy simulation CT images.
    Netherton TJ; Rhee DJ; Cardenas CE; Chung C; Klopp AH; Peterson CB; Howell RM; Balter PA; Court LE
    Med Phys; 2020 Nov; 47(11):5592-5608. PubMed ID: 33459402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vertebral bone attenuation on low-dose chest CT: quantitative volumetric analysis for bone fragility assessment.
    Kim YW; Kim JH; Yoon SH; Lee JH; Lee CH; Shin CS; Park YS
    Osteoporos Int; 2017 Jan; 28(1):329-338. PubMed ID: 27480628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using a Dual-Input Convolutional Neural Network for Automated Detection of Pediatric Supracondylar Fracture on Conventional Radiography.
    Choi JW; Cho YJ; Lee S; Lee J; Lee S; Choi YH; Cheon JE; Ha JY
    Invest Radiol; 2020 Feb; 55(2):101-110. PubMed ID: 31725064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. External validation of a convolutional neural network algorithm for opportunistically detecting vertebral fractures in routine CT scans.
    Nicolaes J; Liu Y; Zhao Y; Huang P; Wang L; Yu A; Dunkel J; Libanati C; Cheng X
    Osteoporos Int; 2024 Jan; 35(1):143-152. PubMed ID: 37674097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks.
    Kim DH; MacKinnon T
    Clin Radiol; 2018 May; 73(5):439-445. PubMed ID: 29269036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.