These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

595 related articles for article (PubMed ID: 34020078)

  • 1. Feasibility of a generalized convolutional neural network for automated identification of vertebral compression fractures: The Manitoba Bone Mineral Density Registry.
    Monchka BA; Kimelman D; Lix LM; Leslie WD
    Bone; 2021 Sep; 150():116017. PubMed ID: 34020078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a manufacturer-independent convolutional neural network for the automated identification of vertebral compression fractures in vertebral fracture assessment images using active learning.
    Monchka BA; Schousboe JT; Davidson MJ; Kimelman D; Hans D; Raina P; Leslie WD
    Bone; 2022 Aug; 161():116427. PubMed ID: 35489707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Vertebral Fractures by Convolutional Neural Networks to Predict Nonvertebral and Hip Fractures: A Registry-based Cohort Study of Dual X-ray Absorptiometry.
    Derkatch S; Kirby C; Kimelman D; Jozani MJ; Davidson JM; Leslie WD
    Radiology; 2019 Nov; 293(2):405-411. PubMed ID: 31526255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning for automated abdominal aortic calcification scoring of DXA vertebral fracture assessment images: A pilot study.
    Reid S; Schousboe JT; Kimelman D; Monchka BA; Jafari Jozani M; Leslie WD
    Bone; 2021 Jul; 148():115943. PubMed ID: 33836309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.
    Joo MW; Ko T; Kim MS; Lee YS; Shin SH; Chung YG; Lee HK
    Clin Orthop Relat Res; 2023 Nov; 481(11):2247-2256. PubMed ID: 37615504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Differentiation Between Osteoporotic Vertebral Fracture and Malignant Vertebral Fracture on MRI Using a Deep Convolutional Neural Network.
    Yoda T; Maki S; Furuya T; Yokota H; Matsumoto K; Takaoka H; Miyamoto T; Okimatsu S; Shiga Y; Inage K; Orita S; Eguchi Y; Yamashita T; Masuda Y; Uno T; Ohtori S
    Spine (Phila Pa 1976); 2022 Apr; 47(8):E347-E352. PubMed ID: 34919075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm.
    Lee JH; Kim DH; Jeong SN; Choi SH
    J Dent; 2018 Oct; 77():106-111. PubMed ID: 30056118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images.
    Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT
    Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prevalent vertebral fracture on bone density lateral spine (VFA) images in routine clinical practice predict incident fractures.
    Schousboe JT; Lix LM; Morin SN; Derkatch S; Bryanton M; Alhrbi M; Leslie WD
    Bone; 2019 Apr; 121():72-79. PubMed ID: 30634065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoporosis treatment considerations based upon fracture history, fracture risk assessment, vertebral fracture assessment, and bone density in Canada.
    Leslie WD; Lix LM; Binkley N
    Arch Osteoporos; 2020 Jun; 15(1):93. PubMed ID: 32577922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and external validation of automated detection, classification, and localization of ankle fractures: inside the black box of a convolutional neural network (CNN).
    Prijs J; Liao Z; To MS; Verjans J; Jutte PC; Stirler V; Olczak J; Gordon M; Guss D; DiGiovanni CW; Jaarsma RL; IJpma FFA; Doornberg JN;
    Eur J Trauma Emerg Surg; 2023 Apr; 49(2):1057-1069. PubMed ID: 36374292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of densitometric vertebral fracture assessment when performed by DXA technicians--a cross-sectional, multiobserver study.
    Rud B; Vestergaard A; Hyldstrup L
    Osteoporos Int; 2016 Apr; 27(4):1451-1458. PubMed ID: 26556734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is Deep Learning On Par with Human Observers for Detection of Radiographically Visible and Occult Fractures of the Scaphoid?
    Langerhuizen DWG; Bulstra AEJ; Janssen SJ; Ring D; Kerkhoffs GMMJ; Jaarsma RL; Doornberg JN
    Clin Orthop Relat Res; 2020 Nov; 478(11):2653-2659. PubMed ID: 32452927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-Aided Detection of Incidental Lumbar Spine Fractures from Routine Dual-Energy X-Ray Absorptiometry (DEXA) Studies Using a Support Vector Machine (SVM) Classifier.
    Mehta SD; Sebro R
    J Digit Imaging; 2020 Feb; 33(1):204-210. PubMed ID: 31062114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chest CT-based automated vertebral fracture assessment using artificial intelligence and morphologic features.
    Nadeem SA; Comellas AP; Regan EA; Hoffman EA; Saha PK
    Med Phys; 2024 Jun; 51(6):4201-4218. PubMed ID: 38721977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using artificial intelligence to diagnose fresh osteoporotic vertebral fractures on magnetic resonance images.
    Yabu A; Hoshino M; Tabuchi H; Takahashi S; Masumoto H; Akada M; Morita S; Maeno T; Iwamae M; Inose H; Kato T; Yoshii T; Tsujio T; Terai H; Toyoda H; Suzuki A; Tamai K; Ohyama S; Hori Y; Okawa A; Nakamura H
    Spine J; 2021 Oct; 21(10):1652-1658. PubMed ID: 33722728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a multiview architecture for automatic vertebral labeling of palliative radiotherapy simulation CT images.
    Netherton TJ; Rhee DJ; Cardenas CE; Chung C; Klopp AH; Peterson CB; Howell RM; Balter PA; Court LE
    Med Phys; 2020 Nov; 47(11):5592-5608. PubMed ID: 33459402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertebral bone attenuation on low-dose chest CT: quantitative volumetric analysis for bone fragility assessment.
    Kim YW; Kim JH; Yoon SH; Lee JH; Lee CH; Shin CS; Park YS
    Osteoporos Int; 2017 Jan; 28(1):329-338. PubMed ID: 27480628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using a Dual-Input Convolutional Neural Network for Automated Detection of Pediatric Supracondylar Fracture on Conventional Radiography.
    Choi JW; Cho YJ; Lee S; Lee J; Lee S; Choi YH; Cheon JE; Ha JY
    Invest Radiol; 2020 Feb; 55(2):101-110. PubMed ID: 31725064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. External validation of a convolutional neural network algorithm for opportunistically detecting vertebral fractures in routine CT scans.
    Nicolaes J; Liu Y; Zhao Y; Huang P; Wang L; Yu A; Dunkel J; Libanati C; Cheng X
    Osteoporos Int; 2024 Jan; 35(1):143-152. PubMed ID: 37674097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.