BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34021241)

  • 1. Optical interferometry based micropipette aspiration provides real-time sub-nanometer spatial resolution.
    Berardi M; Bielawski K; Rijnveld N; Gruca G; Aardema H; van Tol L; Wuite G; Akca BI
    Commun Biol; 2021 May; 4(1):610. PubMed ID: 34021241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interferometric laser diode probing of micrometer- and nanometer-scale materials.
    Sherman GW; Bradley CC
    Appl Opt; 2003 Nov; 42(31):6360-6. PubMed ID: 14649279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micropipette Aspiration of Oocytes to Assess Cortical Tension.
    Evans JP; Robinson DN
    Methods Mol Biol; 2018; 1818():163-171. PubMed ID: 29961265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable optical coupler controlled by optical gradient forces.
    Fong KY; Pernice WH; Li M; Tang HX
    Opt Express; 2011 Aug; 19(16):15098-108. PubMed ID: 21934871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructures and functional materials fabricated by interferometric lithography.
    Xia D; Ku Z; Lee SC; Brueck SR
    Adv Mater; 2011 Jan; 23(2):147-79. PubMed ID: 20976672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel optical readout of cantilever arrays in dynamic mode.
    Koelmans WW; van Honschoten J; de Vries J; Vettiger P; Abelmann L; Elwenspoek MC
    Nanotechnology; 2010 Oct; 21(39):395503. PubMed ID: 20820095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale viscoelastic properties of an aligned collagen scaffold.
    Chaudhry B; Ashton H; Muhamed A; Yost M; Bull S; Frankel D
    J Mater Sci Mater Med; 2009 Jan; 20(1):257-63. PubMed ID: 18763020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large deformation finite element analysis of micropipette aspiration to determine the mechanical properties of the chondrocyte.
    Baaijens FP; Trickey WR; Laursen TA; Guilak F
    Ann Biomed Eng; 2005 Apr; 33(4):494-501. PubMed ID: 15909655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micropipette aspiration for studying cellular mechanosensory responses and mechanics.
    Kee YS; Robinson DN
    Methods Mol Biol; 2013; 983():367-82. PubMed ID: 23494318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry.
    Li C; Huang Z; Wang RK
    Opt Express; 2011 May; 19(11):10153-63. PubMed ID: 21643273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscale characterization of the viscoelastic properties of hydrogel biomaterials using dual-mode ultrasound elastography.
    Hong X; Stegemann JP; Deng CX
    Biomaterials; 2016 May; 88():12-24. PubMed ID: 26928595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precision steering of an optical trap by electro-optic deflection.
    Valentine MT; Guydosh NR; Gutiérrez-Medina B; Fehr AN; Andreasson JO; Block SM
    Opt Lett; 2008 Mar; 33(6):599-601. PubMed ID: 18347722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced optical tweezers for the study of cellular and molecular biomechanics.
    Brouhard GJ; Schek HT; Hunt AJ
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):121-5. PubMed ID: 12617534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Verification of polarising optics for the LISA optical bench.
    Dehne M; Tröbs M; Heinzel G; Danzmann K
    Opt Express; 2012 Dec; 20(25):27273-87. PubMed ID: 23262677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation.
    Mattei G; Gruca G; Rijnveld N; Ahluwalia A
    J Mech Behav Biomed Mater; 2015 Oct; 50():150-9. PubMed ID: 26143307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Displacement interferometry with stabilization of wavelength in air.
    Lazar J; Holá M; Cíp O; Cížek M; Hrabina J; Buchta Z
    Opt Express; 2012 Dec; 20(25):27830-7. PubMed ID: 23262728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biolens behavior of RBCs under optically-induced mechanical stress.
    Merola F; Barroso Á; Miccio L; Memmolo P; Mugnano M; Ferraro P; Denz C
    Cytometry A; 2017 May; 91(5):527-533. PubMed ID: 28296044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical interferometry imaging for creep modeling of the cornea.
    Yoo L; Reed J; Gimzewski JK; Demer JL
    Invest Ophthalmol Vis Sci; 2011 Oct; 52(11):8420-4. PubMed ID: 21969299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optoacoustic imaging based on the interferometric measurement of surface displacement.
    Carp SA; Venugopalan V
    J Biomed Opt; 2007; 12(6):064001. PubMed ID: 18163817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-shot picosecond interferometry with one-nanometer resolution for dynamical surface morphology using a soft X-ray laser.
    Suemoto T; Terakawa K; Ochi Y; Tomita T; Yamamoto M; Hasegawa N; Deki M; Minami Y; Kawachi T
    Opt Express; 2010 Jun; 18(13):14114-22. PubMed ID: 20588544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.