These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34021408)

  • 1. Prediction of spring flows using nonlinear autoregressive exogenous (NARX) neural network models.
    Di Nunno F; Granata F; Gargano R; de Marinis G
    Environ Monit Assess; 2021 May; 193(6):350. PubMed ID: 34021408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Groundwater level prediction in Apulia region (Southern Italy) using NARX neural network.
    Di Nunno F; Granata F
    Environ Res; 2020 Nov; 190():110062. PubMed ID: 32810497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forecasting groundwater level of karst aquifer in a large mining area using partial mutual information and NARX hybrid model.
    Zhang WR; Liu TX; Duan LM; Zhou SH; Sun L; Shi ZM; Qu S; Bian MM; Yu DG; Singh VP
    Environ Res; 2022 Oct; 213():113747. PubMed ID: 35753379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of the karstic spring flow rates under climate change by climatic variables based on the artificial neural network: a case study of Iran.
    Zeydalinejad N; Nassery HR; Shakiba A; Alijani F
    Environ Monit Assess; 2020 May; 192(6):375. PubMed ID: 32417970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nonlinear autoregressive exogenous (NARX) model to predict nitrate concentration in rivers.
    Di Nunno F; Race M; Granata F
    Environ Sci Pollut Res Int; 2022 Jun; 29(27):40623-40642. PubMed ID: 35083679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential impacts of climate change on groundwater level through hybrid soft-computing methods: a case study-Shabestar Plain, Iran.
    Jeihouni E; Mohammadi M; Eslamian S; Zareian MJ
    Environ Monit Assess; 2019 Sep; 191(10):620. PubMed ID: 31493149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature and discharge variations in natural mineral water springs due to climate variability: a case study in the Piedmont Alps (NW Italy).
    Bastiancich L; Lasagna M; Mancini S; Falco M; De Luca DA
    Environ Geochem Health; 2022 Jul; 44(7):1971-1994. PubMed ID: 33660150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear autoregressive neural networks with external inputs for forecasting of typhoon inundation level.
    Ouyang HT
    Environ Monit Assess; 2017 Aug; 189(8):376. PubMed ID: 28681325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Comparison of the Geochemical Characteristics of Karst Springs of a Vertically Zoned Climate Region under Human Activity: A Case of Shuifang Spring and Bitan Spring in the Jinfo Mountain Area, Chongqing].
    Xie GW; Yang PH; Sheng T; Deng SJ; Hong AH
    Huan Jing Ke Xue; 2019 Jul; 40(7):3078-3088. PubMed ID: 31854705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in a coastal karst aquifer through conduit network using CFPv2.
    Xu Z; Hu BX; Davis H; Kish S
    J Contam Hydrol; 2015 Nov; 182():131-45. PubMed ID: 26387032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of spring waters employing a multiparametric approach with special focus on stable isotopes
    Ribeiro C; Velásquez L; Fleming P
    Isotopes Environ Health Stud; 2020 May; 56(2):158-169. PubMed ID: 31957484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling water quality in an urban river using hydrological factors--data driven approaches.
    Chang FJ; Tsai YH; Chen PA; Coynel A; Vachaud G
    J Environ Manage; 2015 Mar; 151():87-96. PubMed ID: 25544251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustenance of Himalayan springs in an emerging water crisis.
    Verma R; Jamwal P
    Environ Monit Assess; 2022 Jan; 194(2):87. PubMed ID: 35020087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coastal hydrogeological system of Mar Piccolo (Taranto, Italy).
    Zuffianò LE; Basso A; Casarano D; Dragone V; Limoni PP; Romanazzi A; Santaloia F; Polemio M
    Environ Sci Pollut Res Int; 2016 Jul; 23(13):12502-14. PubMed ID: 26201653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of pollution and recovery time of karst springs, an example from a carbonate aquifer in Israel.
    Magal E; Arbel Y; Caspi S; Glazman H; Greenbaum N; Yechieli Y
    J Contam Hydrol; 2013 Feb; 145():26-36. PubMed ID: 23270817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contaminant sources and processes affecting spring water quality in a typical karst basin (Hongjiadu Basin, SW China): insights provided by hydrochemical and isotopic data.
    Ren K; Pan X; Zeng J; Yuan D
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):31354-31367. PubMed ID: 31473924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of road salt contamination in karst aquifers and soils over multiple timescales.
    Robinson HK; Hasenmueller EA
    Sci Total Environ; 2017 Dec; 603-604():94-108. PubMed ID: 28623795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using δ
    Ahmed N; Ye M; Wang Y; Greenhalgh T; Fowler K
    Ground Water; 2021 Nov; 59(6):856-865. PubMed ID: 33871903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal analysis of spring water data to assess nitrate inputs to groundwater in an agricultural area (Osona, NE Spain).
    Boy-Roura M; Menció A; Mas-Pla J
    Sci Total Environ; 2013 May; 452-453():433-45. PubMed ID: 23567097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensor Fusion with NARX Neural Network to Predict the Mass Flow in a Sugarcane Harvester.
    Lima JJA; Maldaner LF; Molin JP
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34282796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.