BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 34021605)

  • 1. Corticospinal recruitment of spinal motor neurons in human stroke survivors.
    Urbin MA; Collinger JL; Wittenberg GF
    J Physiol; 2021 Sep; 599(18):4357-4373. PubMed ID: 34021605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spike-timing-dependent plasticity in lower-limb motoneurons after human spinal cord injury.
    Urbin MA; Ozdemir RA; Tazoe T; Perez MA
    J Neurophysiol; 2017 Oct; 118(4):2171-2180. PubMed ID: 28468994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased paired stimuli enhance corticospinal-motoneuronal plasticity in humans with spinal cord injury.
    Grover FM; Chen B; Perez MA
    J Neurophysiol; 2023 Jun; 129(6):1414-1422. PubMed ID: 36752493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potentiating paired corticospinal-motoneuronal plasticity after spinal cord injury.
    Bunday KL; Urbin MA; Perez MA
    Brain Stimul; 2018; 11(5):1083-1092. PubMed ID: 29848448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute intermittent hypoxia boosts spinal plasticity in humans with tetraplegia.
    Christiansen L; Chen B; Lei Y; Urbin MA; Richardson MSA; Oudega M; Sandhu M; Rymer WZ; Trumbower RD; Mitchell GS; Perez MA
    Exp Neurol; 2021 Jan; 335():113483. PubMed ID: 32987000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-intensity, low-frequency repetitive transcranial magnetic stimulation enhances excitability of the human corticospinal pathway.
    D'Amico JM; Dongés SC; Taylor JL
    J Neurophysiol; 2020 May; 123(5):1969-1978. PubMed ID: 32292098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corticospinal-motor neuronal plasticity promotes exercise-mediated recovery in humans with spinal cord injury.
    Jo HJ; Perez MA
    Brain; 2020 May; 143(5):1368-1382. PubMed ID: 32355959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute intermittent hypoxia enhances corticospinal synaptic plasticity in humans.
    Christiansen L; Urbin MA; Mitchell GS; Perez MA
    Elife; 2018 Apr; 7():. PubMed ID: 29688171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of N-methyl-d-aspartate receptors in plasticity induced by paired corticospinal-motoneuronal stimulation in humans.
    Dongés SC; D'Amico JM; Butler JE; Taylor JL
    J Neurophysiol; 2018 Feb; 119(2):652-661. PubMed ID: 29118196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel cortical target to enhance hand motor output in humans with spinal cord injury.
    Long J; Federico P; Perez MA
    Brain; 2017 Jun; 140(6):1619-1632. PubMed ID: 28549131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microcircuit mechanisms involved in paired associative stimulation-induced depression of corticospinal excitability.
    Weise D; Mann J; Ridding M; Eskandar K; Huss M; Rumpf JJ; Di Lazzaro V; Mazzone P; Ranieri F; Classen J
    J Physiol; 2013 Oct; 591(19):4903-20. PubMed ID: 23858008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct patterns of spasticity and corticospinal connectivity following complete spinal cord injury.
    Sangari S; Kirshblum S; Guest JD; Oudega M; Perez MA
    J Physiol; 2021 Oct; 599(19):4441-4454. PubMed ID: 34107068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of coil orientation on motor-evoked potentials in humans with tetraplegia.
    Jo HJ; Di Lazzaro V; Perez MA
    J Physiol; 2018 Oct; 596(20):4909-4921. PubMed ID: 29923194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in motor-evoked potential latency during grasping after tetraplegia.
    Jo HJ; Perez MA
    J Neurophysiol; 2019 Oct; 122(4):1675-1684. PubMed ID: 30673355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired crossed facilitation of the corticospinal pathway after cervical spinal cord injury.
    Bunday KL; Perez MA
    J Neurophysiol; 2012 May; 107(10):2901-11. PubMed ID: 22357796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paired corticospinal-motoneuronal stimulation and exercise after spinal cord injury.
    Jo HJ; Richardson MSA; Oudega M; Perez MA
    J Spinal Cord Med; 2021; 44(sup1):S23-S27. PubMed ID: 34779722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs.
    Pötter-Nerger M; Fischer S; Mastroeni C; Groppa S; Deuschl G; Volkmann J; Quartarone A; Münchau A; Siebner HR
    J Neurophysiol; 2009 Dec; 102(6):3180-90. PubMed ID: 19726723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of paired corticospinal-motoneuronal stimulation on maximal voluntary elbow flexion in cervical spinal cord injury: an experimental study.
    Dongés SC; Boswell-Ruys CL; Butler JE; Taylor JL
    Spinal Cord; 2019 Sep; 57(9):796-804. PubMed ID: 31086274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recruitment of Additional Corticospinal Pathways in the Human Brain with State-Dependent Paired Associative Stimulation.
    Kraus D; Naros G; Guggenberger R; Leão MT; Ziemann U; Gharabaghi A
    J Neurosci; 2018 Feb; 38(6):1396-1407. PubMed ID: 29335359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voluntary motor output is altered by spike-timing-dependent changes in the human corticospinal pathway.
    Taylor JL; Martin PG
    J Neurosci; 2009 Sep; 29(37):11708-16. PubMed ID: 19759317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.