BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34021707)

  • 1. An integrated modular framework for modeling the effect of ammonium on the sialylation process of monoclonal antibodies produced by CHO cells.
    Savizi ISP; Motamedian E; E Lewis N; Jimenez Del Val I; Shojaosadati SA
    Biotechnol J; 2021 Aug; 16(8):e2100019. PubMed ID: 34021707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategic feeding of NS0 and CHO cell cultures to control glycan profiles and immunogenic epitopes of monoclonal antibodies.
    Villacrés C; Tayi VS; Butler M
    J Biotechnol; 2021 Jun; 333():49-62. PubMed ID: 33901620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter over expression in Chinese hamster ovary cells.
    Wong NS; Yap MG; Wang DI
    Biotechnol Bioeng; 2006 Apr; 93(5):1005-16. PubMed ID: 16432895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of immature mAb glycoform secretion during CHO cell culture: An integrated modelling framework.
    Jimenez Del Val I; Fan Y; Weilguny D
    Biotechnol J; 2016 May; 11(5):610-23. PubMed ID: 26743760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of elevated ammonium on glycosylation gene expression in CHO cells.
    Chen P; Harcum SW
    Metab Eng; 2006 Mar; 8(2):123-32. PubMed ID: 16380282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced sialylation of recombinant erythropoietin in genetically engineered Chinese-hamster ovary cells.
    Jeong YT; Choi O; Son YD; Park SY; Kim JH
    Biotechnol Appl Biochem; 2009 Apr; 52(Pt 4):283-91. PubMed ID: 18590515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of glycosylation by stable co-expression of two sialylation-related enzymes on Chinese hamster ovary cells.
    Thi Sam N; Misaki R; Ohashi T; Fujiyama K
    J Biosci Bioeng; 2018 Jul; 126(1):102-110. PubMed ID: 29439861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation of intracellular glycosylation activities in CHO cells: effects of nucleotide sugar precursor feeding.
    Wong NS; Wati L; Nissom PM; Feng HT; Lee MM; Yap MG
    Biotechnol Bioeng; 2010 Oct; 107(2):321-36. PubMed ID: 20506284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ammonium alters N-glycan structures of recombinant TNFR-IgG: degradative versus biosynthetic mechanisms.
    Gawlitzek M; Ryll T; Lofgren J; Sliwkowski MB
    Biotechnol Bioeng; 2000 Jun; 68(6):637-46. PubMed ID: 10799988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Characterization of N-glycosylation in an anti-EGFR monoclonal antibody produced by different expression systems].
    Wang C; Guo H
    Sheng Wu Gong Cheng Xue Bao; 2017 Jun; 33(6):1018-1027. PubMed ID: 28895363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the loss of protein sialylation in an fc-fusion protein-producing CHO cell bioprocess.
    Chen X; Liu X; Xiao Z; Liu J; Zhao L; Tan WS; Fan L
    Appl Microbiol Biotechnol; 2019 Jun; 103(12):4753-4765. PubMed ID: 31049620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated Genome and Protein Editing Swaps α-2,6 Sialylation for α-2,3 Sialic Acid on Recombinant Antibodies from CHO.
    Chung CY; Wang Q; Yang S; Yin B; Zhang H; Betenbaugh M
    Biotechnol J; 2017 Feb; 12(2):. PubMed ID: 27943633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding of altered N-glycosylation-related gene expression in recombinant Chinese hamster ovary cells subjected to elevated ammonium concentration by digital mRNA counting.
    Ha TK; Kim YG; Lee GM
    Biotechnol Bioeng; 2015 Aug; 112(8):1583-93. PubMed ID: 25728222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced sialylation of recombinant human erythropoietin in Chinese hamster ovary cells by combinatorial engineering of selected genes.
    Son YD; Jeong YT; Park SY; Kim JH
    Glycobiology; 2011 Aug; 21(8):1019-28. PubMed ID: 21436238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of poly-LacNAc biosynthesis with release of CMP-Neu5Ac feedback inhibition increases the sialylation of recombinant EPO produced in CHO cells.
    Lee CG; Oh MJ; Park SY; An HJ; Kim JH
    Sci Rep; 2018 May; 8(1):7273. PubMed ID: 29740059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Producing Biologics with Defined N-Glycosylation in Plants.
    Esqueda A; Chen Q
    Methods Mol Biol; 2023; 2597():235-250. PubMed ID: 36374425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene-expression profiles for five key glycosylation genes for galactose-fed CHO cells expressing recombinant IL-4/13 cytokine trap.
    Clark KJ; Griffiths J; Bailey KM; Harcum SW
    Biotechnol Bioeng; 2005 Jun; 90(5):568-77. PubMed ID: 15818560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells.
    Hills AE; Patel A; Boyd P; James DC
    Biotechnol Bioeng; 2001 Oct; 75(2):239-51. PubMed ID: 11536148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of α2,6-sialylated IgG1 in CHO cells.
    Raymond C; Robotham A; Spearman M; Butler M; Kelly J; Durocher Y
    MAbs; 2015; 7(3):571-83. PubMed ID: 25875452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translocation across Golgi vesicle membranes: a CHO glycosylation mutant deficient in CMP-sialic acid transport.
    Deutscher SL; Nuwayhid N; Stanley P; Briles EI; Hirschberg CB
    Cell; 1984 Dec; 39(2 Pt 1):295-9. PubMed ID: 6498937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.