These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
466 related articles for article (PubMed ID: 34022465)
1. The role of rare earth elements in biodegradable metals: A review. Li H; Wang P; Lin G; Huang J Acta Biomater; 2021 Jul; 129():33-42. PubMed ID: 34022465 [TBL] [Abstract][Full Text] [Related]
2. Nutrient alloying elements in biodegradable metals: a review. Li H; Lin G; Wang P; Huang J; Wen C J Mater Chem B; 2021 Dec; 9(48):9806-9825. PubMed ID: 34842888 [TBL] [Abstract][Full Text] [Related]
3. Comparative in vitro study on binary Mg-RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) alloy systems. Liu J; Bian D; Zheng Y; Chu X; Lin Y; Wang M; Lin Z; Li M; Zhang Y; Guan S Acta Biomater; 2020 Jan; 102():508-528. PubMed ID: 31722254 [TBL] [Abstract][Full Text] [Related]
4. A review of the physiological impact of rare earth elements and their uses in biomedical Mg alloys. Weng W; Biesiekierski A; Li Y; Dargusch M; Wen C Acta Biomater; 2021 Aug; 130():80-97. PubMed ID: 34118448 [TBL] [Abstract][Full Text] [Related]
5. Current status and perspectives of zinc-based absorbable alloys for biomedical applications. Hernández-Escobar D; Champagne S; Yilmazer H; Dikici B; Boehlert CJ; Hermawan H Acta Biomater; 2019 Oct; 97():1-22. PubMed ID: 31351253 [TBL] [Abstract][Full Text] [Related]
6. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Willbold E; Gu X; Albert D; Kalla K; Bobe K; Brauneis M; Janning C; Nellesen J; Czayka W; Tillmann W; Zheng Y; Witte F Acta Biomater; 2015 Jan; 11():554-62. PubMed ID: 25278442 [TBL] [Abstract][Full Text] [Related]
7. Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications. Munir K; Lin J; Wen C; Wright PFA; Li Y Acta Biomater; 2020 Jan; 102():493-507. PubMed ID: 31811958 [TBL] [Abstract][Full Text] [Related]
8. Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements. Chen Y; Dou J; Yu H; Chen C J Biomater Appl; 2019 May; 33(10):1348-1372. PubMed ID: 30854910 [TBL] [Abstract][Full Text] [Related]
9. Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites-A review. Kiani F; Wen C; Li Y Acta Biomater; 2020 Feb; 103():1-23. PubMed ID: 31881312 [TBL] [Abstract][Full Text] [Related]
10. Development of biodegradable Zn-1Mg-0.1RE (RE = Er, Dy, and Ho) alloys for biomedical applications. Tong X; Zhang D; Lin J; Dai Y; Luan Y; Sun Q; Shi Z; Wang K; Gao Y; Lin J; Li Y; Dargusch M; Wen C Acta Biomater; 2020 Nov; 117():384-399. PubMed ID: 33007488 [TBL] [Abstract][Full Text] [Related]
11. Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review. Ding Y; Wen C; Hodgson P; Li Y J Mater Chem B; 2014 Apr; 2(14):1912-1933. PubMed ID: 32261628 [TBL] [Abstract][Full Text] [Related]
12. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Agarwal S; Curtin J; Duffy B; Jaiswal S Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():948-963. PubMed ID: 27524097 [TBL] [Abstract][Full Text] [Related]
13. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Li HF; Xie XH; Zheng YF; Cong Y; Zhou FY; Qiu KJ; Wang X; Chen SH; Huang L; Tian L; Qin L Sci Rep; 2015 May; 5():10719. PubMed ID: 26023878 [TBL] [Abstract][Full Text] [Related]
14. Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications. Bian D; Zhou W; Deng J; Liu Y; Li W; Chu X; Xiu P; Cai H; Kou Y; Jiang B; Zheng Y Acta Biomater; 2017 Dec; 64():421-436. PubMed ID: 28987782 [TBL] [Abstract][Full Text] [Related]
15. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. Venezuela J; Dargusch MS Acta Biomater; 2019 Mar; 87():1-40. PubMed ID: 30660777 [TBL] [Abstract][Full Text] [Related]
16. Biodegradable ternary Zn-3Ge-0.5X (X=Cu, Mg, and Fe) alloys for orthopedic applications. Lin J; Tong X; Sun Q; Luan Y; Zhang D; Shi Z; Wang K; Lin J; Li Y; Dargusch M; Wen C Acta Biomater; 2020 Oct; 115():432-446. PubMed ID: 32853807 [TBL] [Abstract][Full Text] [Related]
17. Magnesium-based biodegradable alloys: Degradation, application, and alloying elements. Pogorielov M; Husak E; Solodivnik A; Zhdanov S Interv Med Appl Sci; 2017 Mar; 9(1):27-38. PubMed ID: 28932493 [TBL] [Abstract][Full Text] [Related]
18. Zinc-based alloys for degradable vascular stent applications. Mostaed E; Sikora-Jasinska M; Drelich JW; Vedani M Acta Biomater; 2018 Apr; 71():1-23. PubMed ID: 29530821 [TBL] [Abstract][Full Text] [Related]
19. Effect of strain on degradation behaviors of WE43, Fe and Zn wires. Chen K; Lu Y; Tang H; Gao Y; Zhao F; Gu X; Fan Y Acta Biomater; 2020 Sep; 113():627-645. PubMed ID: 32574860 [TBL] [Abstract][Full Text] [Related]
20. Methods for improving the properties of zinc for the application of biodegradable vascular stents. Chen S; Du T; Zhang H; Qi J; Zhang Y; Mu Y; Qiao A Biomater Adv; 2024 Jan; 156():213693. PubMed ID: 37992478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]