These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 3402248)
1. Vascular responsiveness to periarterial electrical nerve stimulation on canine ophthalmic arteries. Ohkubo H; Chiba S Curr Eye Res; 1988 Jun; 7(6):607-13. PubMed ID: 3402248 [TBL] [Abstract][Full Text] [Related]
2. Vascular responses of ophthalmic arteries to exogenous and endogenous norepinephrine. Ohkubo H; Chiba S Exp Eye Res; 1989 Apr; 48(4):539-47. PubMed ID: 2497024 [TBL] [Abstract][Full Text] [Related]
3. Characteristics of the responses of isolated and perfused canine splenic arteries to vasoactive substances and to periarterially electrical stimulation. Ren LM; Nakane T; Chiba S Jpn J Pharmacol; 1994 Jan; 64(1):19-25. PubMed ID: 7909341 [TBL] [Abstract][Full Text] [Related]
4. Neurogenic double-peaked vasoconstriction of human gastroepiploic artery is mediated by both alpha1- and alpha2-adrenoceptors. Fukui D; Yang XP; Chiba S Br J Pharmacol; 2005 Mar; 144(6):737-42. PubMed ID: 15685216 [TBL] [Abstract][Full Text] [Related]
5. Postjunctional alpha-adrenoceptor subtypes in isolated and perfused canine epicardial coronary arteries. Nakane T; Chiba S J Cardiovasc Pharmacol; 1987 Dec; 10(6):651-7. PubMed ID: 2450235 [TBL] [Abstract][Full Text] [Related]
6. Differential effects of omega-conotoxin GVIA and tetrodotoxin on vasoconstrictions evoked by electrical stimulation and nicotinic receptor stimulation in canine isolated, perfused splenic arteries. Ren LM; Nakane T; Chiba S Br J Pharmacol; 1994 Apr; 111(4):1321-7. PubMed ID: 7913375 [TBL] [Abstract][Full Text] [Related]
7. Responses of isolated canine ophthalmic and ciliary arteries to vasoactive substances. Ohkubo H; Chiba S Jpn J Ophthalmol; 1987; 31(4):627-34. PubMed ID: 3448327 [TBL] [Abstract][Full Text] [Related]
8. Existence of different alpha(1)-adrenoceptor subtypes in junctional and extrajunctional neurovascular regions in canine splenic arteries. Yang XP; Chiba S Br J Pharmacol; 2001 Apr; 132(8):1852-8. PubMed ID: 11309258 [TBL] [Abstract][Full Text] [Related]
9. Time-dependent enhancement of xylazine-induced, alpha-2 adrenoceptor-mediated vasoconstriction in isolated and perfused canine pulmonary veins. Haniuda M; Itoh N; Chiba S J Pharmacol Exp Ther; 1989 Apr; 249(1):340-7. PubMed ID: 2565395 [TBL] [Abstract][Full Text] [Related]
10. Purinergic and adrenergic cotransmission in canine isolated and perfused gastroepiploic arteries. Tanaka K; Yang XP; Chiba S Clin Exp Pharmacol Physiol; 2003 Sep; 30(9):678-83. PubMed ID: 12940888 [TBL] [Abstract][Full Text] [Related]
11. Blocking effects of nipradilol on vasoconstrictor responses to periarterial nerve stimulation and alpha-adrenoceptor agonists in isolated and perfused canine mesenteric arteries. Chiba S; Tsukada M Pharmacology; 1987; 35(2):112-20. PubMed ID: 2888138 [TBL] [Abstract][Full Text] [Related]
12. Role of renal sympathetic nerves in regulating renovascular responses to angiotensin II in spontaneously hypertensive rats. Dubinion JH; Mi Z; Jackson EK J Pharmacol Exp Ther; 2006 Jun; 317(3):1330-6. PubMed ID: 16537795 [TBL] [Abstract][Full Text] [Related]
13. Pharmacological analysis of vasoconstriction of isolated canine ophthalmic and ciliary arteries to alpha-adrenoceptor agonists. Ohkubo H; Chiba S Exp Eye Res; 1987 Aug; 45(2):263-70. PubMed ID: 2888679 [TBL] [Abstract][Full Text] [Related]
14. Different sensitivity of blocking effects of alpha-adrenoceptor blocking agents on vascular responses to intraluminal norepinephrine and periarterial stimulation in isolated dog arteries. Chiba S; Tsukada M Jpn J Pharmacol; 1985 May; 38(1):83-9. PubMed ID: 2862303 [TBL] [Abstract][Full Text] [Related]
15. Endothelium-released adenosine triphosphate contributes to vasoconstrictor responses to periarterial nerve stimulation in isolated, perfused canine splenic arteries. Yang XP; Chiba S Heart Vessels; 1998; 13(5):256-61. PubMed ID: 10483776 [TBL] [Abstract][Full Text] [Related]
16. Effects of a selective neuropeptide Y Y(1) receptor antagonist BIBP 3226 on double peaked vasoconstrictor responses to periarterial nerve stimulation in canine splenic arteries. Yang XP; Chiba S Br J Pharmacol; 2000 Aug; 130(7):1699-705. PubMed ID: 10928977 [TBL] [Abstract][Full Text] [Related]
17. Angiotensin II receptor subtypes involved in the modulation of purinergic and adrenergic vasoconstrictions to periarterial electrical nerve stimulation in the canine splenic artery. Yang XP; Chiba S J Cardiovasc Pharmacol; 2003 Jan; 41 Suppl 1():S49-52. PubMed ID: 12688396 [TBL] [Abstract][Full Text] [Related]
18. Periarterial electrical nerve stimulation-induced adrenergic vasoconstriction inhibited by adrenergic alpha1B-receptor blockade but not by alpha1A-blockade. Yang XP; Chiba S Jpn J Pharmacol; 2000 Nov; 84(3):360-2. PubMed ID: 11138740 [TBL] [Abstract][Full Text] [Related]
19. Effects of L-765,314, a selective and potent alpha 1B-adrenoceptor antagonist, on periarterial nerve electrical stimulation-induced double-peaked constrictor responses in isolated dog splenic arteries. Yang XP; Chiba S Jpn J Pharmacol; 2002 Aug; 89(4):429-32. PubMed ID: 12233824 [TBL] [Abstract][Full Text] [Related]
20. Non-adrenergic inhibition at prejunctional sites by agmatine of purinergic vasoconstriction in rabbit saphenous artery. Zhao D; Ren LM Neuropharmacology; 2005 Mar; 48(4):597-606. PubMed ID: 15755487 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]