BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34022578)

  • 1. Insights into the mechanism of hydrogen peroxide activation with biochar produced from anaerobically digested residues at different pyrolysis temperatures for the degradation of BTEXS.
    Sun P; Hua Y; Zhao J; Wang C; Tan Q; Shen G
    Sci Total Environ; 2021 Sep; 788():147718. PubMed ID: 34022578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of BTEXS with stable and pH-insensitive iron-manganese modified biochar from post pyrolysis.
    Sun P; Shen G; Tan Q; Chen Q; Song R; Hu J
    Chemosphere; 2021 Jan; 263():128092. PubMed ID: 33297088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of biochar pyrolysis temperature on intracellular and extracellular biodegradation of biochar-adsorbed organic compounds.
    Tao J; Wu W; Lin D; Yang K
    Environ Pollut; 2024 Apr; 346():123583. PubMed ID: 38365081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-magnetite supported by biochar pyrolyzed at different temperatures as hydrogen peroxide activator: Synthesis mechanism and the effects on ethylbenzene removal.
    Yan J; Yang L; Qian L; Han L; Chen M
    Environ Pollut; 2020 Jun; 261():114020. PubMed ID: 32066062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physicochemical properties and lead ion adsorption of biochar prepared from Turkish gall residue at different pyrolysis temperatures.
    Zhou XY; Xie F; Jiang M; Ke-Ao L; Tian SG
    Microsc Res Tech; 2021 May; 84(5):1003-1011. PubMed ID: 33615646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective sorption of atrazine by biochar colloids and residues derived from different pyrolysis temperatures.
    Yang F; Gao Y; Sun L; Zhang S; Li J; Zhang Y
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):18528-18539. PubMed ID: 29700748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Cadmium adsorption by biochar prepared from pyrolysis of silk waste at different temperatures].
    Ji HY; Wang YY; Lyu HH; Liu YX; Yang RQ; Yang SM
    Ying Yong Sheng Tai Xue Bao; 2018 Apr; 29(4):1328-1338. PubMed ID: 29726244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of valuable chemicals through the catalytic pyrolysis of harmful oil sludge over metal-loaded HZSM-5 catalysts.
    Hakimian H; Valizadeh S; Kim YM; Park YK
    Environ Res; 2022 Nov; 214(Pt 2):113911. PubMed ID: 35863449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate.
    Gai X; Wang H; Liu J; Zhai L; Liu S; Ren T; Liu H
    PLoS One; 2014; 9(12):e113888. PubMed ID: 25469875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida).
    Kim KH; Kim JY; Cho TS; Choi JW
    Bioresour Technol; 2012 Aug; 118():158-62. PubMed ID: 22705519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrolysis of different biomass pre-impregnated with steel pickling waste liquor to prepare magnetic biochars and their use for the degradation of metronidazole.
    Yi Y; Tu G; Zhao D; Tsang PE; Fang Z
    Bioresour Technol; 2019 Oct; 289():121613. PubMed ID: 31202177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic mechanism of nitrogen-doped biochar under different pyrolysis temperatures: The crucial roles of nitrogen incorporation and carbon configuration.
    Wan Y; Hu Y; Zhou W
    Sci Total Environ; 2022 Apr; 816():151502. PubMed ID: 34752876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation of harmful cyanobacteria Microcystis aeruginosa by Cu
    Gao X; Zhang H; Zhang J; Weng N; Huo S
    Bioresour Technol; 2024 Feb; 394():130259. PubMed ID: 38151210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced adsorption of aqueous Pb(II) by modified biochar produced through pyrolysis of watermelon seeds.
    Ahmed W; Mehmood S; Núñez-Delgado A; Ali S; Qaswar M; Shakoor A; Mahmood M; Chen DY
    Sci Total Environ; 2021 Aug; 784():147136. PubMed ID: 33892324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic ozonation oxidation of ketoprofen by peanut shell-based biochar: effects of the pyrolysis temperatures.
    Li H; Liu S; Qiu S; Sun L; Yuan X; Xia D
    Environ Technol; 2022 Feb; 43(6):848-860. PubMed ID: 32762531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.).
    Angin D; Sensöz S
    Int J Phytoremediation; 2014; 16(7-12):684-93. PubMed ID: 24933878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphate and ammonium adsorption of sesame straw biochars produced at different pyrolysis temperatures.
    Yin Q; Zhang B; Wang R; Zhao Z
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4320-4329. PubMed ID: 29181752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saccharide-derived microporous spherical biochar prepared from hydrothermal carbonization and different pyrolysis temperatures: synthesis, characterization, and application in water treatment.
    Tran HN; Lee CK; Nguyen TV; Chao HP
    Environ Technol; 2018 Nov; 39(21):2747-2760. PubMed ID: 28791934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Biochar Derived From Pyrolysis of Waste Fiberboard on Tetracycline Adsorption in Aqueous Solution.
    Xu D; Gao Y; Lin Z; Gao W; Zhang H; Karnowo K; Hu X; Sun H; Syed-Hassan SSA; Zhang S
    Front Chem; 2019; 7():943. PubMed ID: 32117859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application.
    Pariyar P; Kumari K; Jain MK; Jadhao PS
    Sci Total Environ; 2020 Apr; 713():136433. PubMed ID: 31954240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.