These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 34022632)
1. Bioleaching of toxic metals from anaerobically digested sludge without external chemical addition. Wang Z; Ni G; Xia J; Song Y; Hu S; Yuan Z; Zheng M Water Res; 2021 Jul; 200():117211. PubMed ID: 34022632 [TBL] [Abstract][Full Text] [Related]
2. Ammonium-based bioleaching of toxic metals from sewage sludge in a continuous bioreactor. Wang Z; Lu X; Zhang X; Yuan Z; Zheng M; Hu S Water Res; 2024 Jun; 256():121651. PubMed ID: 38657312 [TBL] [Abstract][Full Text] [Related]
3. Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria. Xiang L; Chan LC; Wong JW Chemosphere; 2000 Jul; 41(1-2):283-7. PubMed ID: 10819212 [TBL] [Abstract][Full Text] [Related]
4. Acidic aerobic digestion of anaerobically-digested sludge enabled by a novel ammonia-oxidizing bacterium. Wang Z; Zheng M; Duan H; Ni G; Yu W; Liu Y; Yuan Z; Hu S Water Res; 2021 Apr; 194():116962. PubMed ID: 33657493 [TBL] [Abstract][Full Text] [Related]
5. Characterization of an indigenous iron-oxidizing bacterium and its effectiveness in bioleaching heavy metals from anaerobically digested sewage sludge. Gu XY; Wong JW Environ Technol; 2004 Aug; 25(8):889-97. PubMed ID: 15366556 [TBL] [Abstract][Full Text] [Related]
6. Assessment of anaerobic sewage sludge quality for agricultural application after metal bioleaching. Villar LD; Garcia O Environ Technol; 2003 Dec; 24(12):1553-9. PubMed ID: 14977151 [TBL] [Abstract][Full Text] [Related]
7. Extent of bioleaching and bioavailability reduction of potentially toxic heavy metals from sewage sludge through pH-controlled fermentation. Yesil H; Molaey R; Calli B; Tugtas AE Water Res; 2021 Aug; 201():117303. PubMed ID: 34116292 [TBL] [Abstract][Full Text] [Related]
8. Stoichiometric and kinetic characterization of an acid-tolerant ammonia oxidizer 'Candidatus Nitrosoglobus'. Wang Z; Ni G; Maulani N; Xia J; De Clippeleir H; Hu S; Yuan Z; Zheng M Water Res; 2021 May; 196():117026. PubMed ID: 33751975 [TBL] [Abstract][Full Text] [Related]
9. Transformation of Nanoscale and Ionic Cu and Zn during the Incineration of Digested Sewage Sludge (Biosolids). Wielinski J; Gogos A; Voegelin A; Müller C; Morgenroth E; Kaegi R Environ Sci Technol; 2019 Oct; 53(20):11704-11713. PubMed ID: 31425648 [TBL] [Abstract][Full Text] [Related]
10. The combination of aerobic digestion and bioleaching for heavy metal removal from excess sludge. Zhang X; Li J; Yang W; Chen J; Wang X; Xing D; Dong W; Wang H; Wang J Chemosphere; 2022 Mar; 290():133231. PubMed ID: 34902386 [TBL] [Abstract][Full Text] [Related]
11. Bioleaching of heavy metals from anaerobically digested sewage sludge. Pathak A; Dastidar MG; Sreekrishnan TR J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Mar; 43(4):402-11. PubMed ID: 18273746 [TBL] [Abstract][Full Text] [Related]
12. Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source. Wong JW; Xiang L; Gu XY; Zhou LX Chemosphere; 2004 Apr; 55(1):101-7. PubMed ID: 14720552 [TBL] [Abstract][Full Text] [Related]
13. Bioleaching of heavy metals from wastewater sludge with the aim of land application. Yang W; Song W; Li J; Zhang X Chemosphere; 2020 Jun; 249():126134. PubMed ID: 32058136 [TBL] [Abstract][Full Text] [Related]
14. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge. Bayat B; Sari B J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247 [TBL] [Abstract][Full Text] [Related]
15. Biological leaching of heavy metals from anaerobically digested sewage sludge using indigenous sulfur-oxidizing bacteria and sulfur waste in a closed system. Kitada K; Ito A; Yamada K; Aizawa J; Umita T Water Sci Technol; 2001; 43(2):59-65. PubMed ID: 11380206 [TBL] [Abstract][Full Text] [Related]
16. Study on bioleaching of heavy metals and resource potential from tannery yard sludge. Liu H; Yang K; Luo L; Lu Q; Wu Y; Lan M; Luo Y; Liang W Environ Sci Pollut Res Int; 2021 Aug; 28(29):38867-38879. PubMed ID: 33745044 [TBL] [Abstract][Full Text] [Related]
17. Decontamination of heavy metal laden sewage sludge with simultaneous solids reduction using thermophilic sulfur and ferrous oxidizing species. Mehrotra A; Kundu K; Sreekrishnan TR J Environ Manage; 2016 Feb; 167():228-35. PubMed ID: 26686075 [TBL] [Abstract][Full Text] [Related]
18. Effect of ferrous iron loading on dewaterability, heavy metal removal and bacterial community of digested sludge by Acidithiobacillus ferrooxidans. Cai G; Ebrahimi M; Zheng G; Kaksonen AH; Morris C; O'Hara IM; Zhang Z J Environ Manage; 2021 Oct; 295():113114. PubMed ID: 34171779 [TBL] [Abstract][Full Text] [Related]
19. Relationship between microbial community dynamics and process performance during thermophilic sludge bioleaching. Chen SY; Chou LC Environ Sci Pollut Res Int; 2016 Aug; 23(16):16006-14. PubMed ID: 27146534 [TBL] [Abstract][Full Text] [Related]
20. Comparison of bioleaching of heavy metals from municipal sludge using indigenous sulfur and iron-oxidizing microorganisms: continuous stirred tank reactor studies. Pathak A; Kothari R; Dastidar MG; Sreekrishnan TR; Kim DJ J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(1):93-100. PubMed ID: 24117088 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]