These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 34022806)
1. Characterization of full-length transcriptome in Saccharum officinarum and molecular insights into tiller development. Yan H; Zhou H; Luo H; Fan Y; Zhou Z; Chen R; Luo T; Li X; Liu X; Li Y; Qiu L; Wu J BMC Plant Biol; 2021 May; 21(1):228. PubMed ID: 34022806 [TBL] [Abstract][Full Text] [Related]
2. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing. Hoang NV; Furtado A; Mason PJ; Marquardt A; Kasirajan L; Thirugnanasambandam PP; Botha FC; Henry RJ BMC Genomics; 2017 May; 18(1):395. PubMed ID: 28532419 [TBL] [Abstract][Full Text] [Related]
3. De novo analysis of transcriptome reveals genes associated with leaf abscission in sugarcane (Saccharum officinarum L.). Li M; Liang Z; Zeng Y; Jing Y; Wu K; Liang J; He S; Wang G; Mo Z; Tan F; Li S; Wang L BMC Genomics; 2016 Mar; 17():195. PubMed ID: 26946183 [TBL] [Abstract][Full Text] [Related]
4. Association of variation in the sugarcane transcriptome with sugar content. Thirugnanasambandam PP; Hoang NV; Furtado A; Botha FC; Henry RJ BMC Genomics; 2017 Nov; 18(1):909. PubMed ID: 29178834 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the diversity and tissue specificity of sucrose synthase genes in the long read transcriptome of sugarcane. Thirugnanasambandam PP; Mason PJ; Hoang NV; Furtado A; Botha FC; Henry RJ BMC Plant Biol; 2019 Apr; 19(1):160. PubMed ID: 31023213 [TBL] [Abstract][Full Text] [Related]
6. The subgenome Saccharum spontaneum contributes to sugar accumulation in sugarcane as revealed by full-length transcriptomic analysis. Zhao J; Li S; Xu Y; Ahmad N; Kuang B; Feng M; Wei N; Yang X J Adv Res; 2023 Dec; 54():1-13. PubMed ID: 36781019 [TBL] [Abstract][Full Text] [Related]
7. Differential expression in leaves of Saccharum genotypes contrasting in biomass production provides evidence of genes involved in carbon partitioning. Correr FH; Hosaka GK; Barreto FZ; Valadão IB; Balsalobre TWA; Furtado A; Henry RJ; Carneiro MS; Margarido GRA BMC Genomics; 2020 Sep; 21(1):673. PubMed ID: 32993494 [TBL] [Abstract][Full Text] [Related]
8. Comparative analysis of sucrose phosphate synthase (SPS) gene family between Saccharum officinarum and Saccharum spontaneum. Ma P; Zhang X; Chen L; Zhao Q; Zhang Q; Hua X; Wang Z; Tang H; Yu Q; Zhang M; Ming R; Zhang J BMC Plant Biol; 2020 Sep; 20(1):422. PubMed ID: 32928111 [TBL] [Abstract][Full Text] [Related]
10. Comprehensive transcriptome analysis reveals genes in response to water deficit in the leaves of Saccharum narenga (Nees ex Steud.) hack. Liu X; Zhang R; Ou H; Gui Y; Wei J; Zhou H; Tan H; Li Y BMC Plant Biol; 2018 Oct; 18(1):250. PubMed ID: 30342477 [TBL] [Abstract][Full Text] [Related]
11. Integrated mRNA and small RNA sequencing reveals microRNA regulatory network associated with internode elongation in sugarcane (Saccharum officinarum L.). Qiu L; Chen R; Fan Y; Huang X; Luo H; Xiong F; Liu J; Zhang R; Lei J; Zhou H; Wu J; Li Y BMC Genomics; 2019 Nov; 20(1):817. PubMed ID: 31699032 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide identification of leaf abscission associated microRNAs in sugarcane (Saccharum officinarum L.). Li M; Liang Z; He S; Zeng Y; Jing Y; Fang W; Wu K; Wang G; Ning X; Wang L; Li S; Tan H; Tan F BMC Genomics; 2017 Sep; 18(1):754. PubMed ID: 28946845 [TBL] [Abstract][Full Text] [Related]
13. Comparative Transcriptome Profiling of Resistant and Susceptible Sugarcane Cultivars in Response to Infection by Ntambo MS; Meng JY; Rott PC; Henry RJ; Zhang HL; Gao SJ Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31817492 [TBL] [Abstract][Full Text] [Related]
14. A transcriptomic analysis of sugarcane response to Leifsonia xyli subsp. xyli infection. Zhu K; Yang LT; Li CX; Lakshmanan P; Xing YX; Li YR PLoS One; 2021; 16(2):e0245613. PubMed ID: 33529190 [TBL] [Abstract][Full Text] [Related]
15. Physiological and transcriptional analyses of developmental stages along sugarcane leaf. Mattiello L; Riaño-Pachón DM; Martins MC; da Cruz LP; Bassi D; Marchiori PE; Ribeiro RV; Labate MT; Labate CA; Menossi M BMC Plant Biol; 2015 Dec; 15():300. PubMed ID: 26714767 [TBL] [Abstract][Full Text] [Related]
16. Culm transcriptome sequencing of Badila (Saccharum officinarum L.) and analysis of major genes involved in sucrose accumulation. Wang JG; Zhao TT; Wang WZ; Feng CL; Feng XY; Xiong GR; Shen LB; Zhang SZ; Wang WQ; Zhang ZX Plant Physiol Biochem; 2019 Nov; 144():455-465. PubMed ID: 31655344 [TBL] [Abstract][Full Text] [Related]
17. Discovery of genes involved in anthocyanin biosynthesis from the rind and pith of three sugarcane varieties using integrated metabolic profiling and RNA-seq analysis. Ni Y; Chen H; Liu D; Zeng L; Chen P; Liu C BMC Plant Biol; 2021 May; 21(1):214. PubMed ID: 33980175 [TBL] [Abstract][Full Text] [Related]
18. Unveiling the transcriptomic complexity of Miscanthus sinensis using a combination of PacBio long read- and Illumina short read sequencing platforms. Wang Y; Li X; Wang C; Gao L; Wu Y; Ni X; Sun J; Jiang J BMC Genomics; 2021 Sep; 22(1):690. PubMed ID: 34551715 [TBL] [Abstract][Full Text] [Related]
19. Serial analysis of gene expression in sugarcane (Saccharum spp.) leaves revealed alternative C4 metabolism and putative antisense transcripts. Calsa T; Figueira A Plant Mol Biol; 2007 Apr; 63(6):745-62. PubMed ID: 17211512 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide analysis of R2R3-MYB transcription factors family in the autopolyploid Saccharum spontaneum: an exploration of dominance expression and stress response. Yuan Y; Yang X; Feng M; Ding H; Khan MT; Zhang J; Zhang M BMC Genomics; 2021 Aug; 22(1):622. PubMed ID: 34404342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]