These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34022945)

  • 1. Transfer of mode switching performance: from training to upper-limb prosthesis use.
    Heerschop A; van der Sluis CK; Bongers RM
    J Neuroeng Rehabil; 2021 May; 18(1):85. PubMed ID: 34022945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Training prosthesis users to switch between modes of a multi-articulating prosthetic hand.
    Heerschop A; van der Sluis CK; Bongers RM
    Disabil Rehabil; 2024 Jan; 46(1):187-198. PubMed ID: 36541182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance among different types of myocontrolled tasks is not related.
    Heerschop A; van der Sluis CK; Otten E; Bongers RM
    Hum Mov Sci; 2020 Apr; 70():102592. PubMed ID: 32217210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer.
    van Dijk L; van der Sluis CK; van Dijk HW; Bongers RM
    PLoS One; 2016; 11(8):e0160817. PubMed ID: 27556154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual Training of the Myosignal.
    Terlaak B; Bouwsema H; van der Sluis CK; Bongers RM
    PLoS One; 2015; 10(9):e0137161. PubMed ID: 26351838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Task-Oriented Gaming for Transfer to Prosthesis Use.
    van Dijk L; van der Sluis CK; van Dijk HW; Bongers RM
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1384-1394. PubMed ID: 26625419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the effectiveness of serious game training designed to assist in upper limb prothesis rehabilitation.
    Maas B; Van Der Sluis CK; Bongers RM
    Front Rehabil Sci; 2024; 5():1353077. PubMed ID: 38348457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delaying feedback during pre-device training facilitates the retention of novel myoelectric skills: a laboratory and home-based study.
    Stuttaford SA; Dupan SSG; Nazarpour K; Dyson M
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 36928264
    [No Abstract]   [Full Text] [Related]  

  • 9. Influence of mirror therapy and motor imagery on intermanual transfer effects in upper-limb prosthesis training of healthy participants: A randomized pre-posttest study.
    Romkema S; Bongers RM; van der Sluis CK
    PLoS One; 2018; 13(10):e0204839. PubMed ID: 30300378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. User training for machine learning controlled upper limb prostheses: a serious game approach.
    Kristoffersen MB; Franzke AW; Bongers RM; Wand M; Murgia A; van der Sluis CK
    J Neuroeng Rehabil; 2021 Feb; 18(1):32. PubMed ID: 33579326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the type of training task on intermanual transfer effects in upper-limb prosthesis training: A randomized pre-posttest study.
    Romkema S; Bongers RM; van der Sluis CK
    PLoS One; 2017; 12(11):e0188362. PubMed ID: 29190727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermanual transfer in training with an upper-limb myoelectric prosthesis simulator: a mechanistic, randomized, pretest-posttest study.
    Romkema S; Bongers RM; van der Sluis CK
    Phys Ther; 2013 Jan; 93(1):22-31. PubMed ID: 22976445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of feedback during virtual training of grip force control with a myoelectric prosthesis.
    Bouwsema H; van der Sluis CK; Bongers RM
    PLoS One; 2014; 9(5):e98301. PubMed ID: 24865570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Inter-Training Intervals on Intermanual Transfer Effects in Upper-Limb Prosthesis Training: A Randomized Pre-Posttest Study.
    Romkema S; Bongers RM; van der Sluis CK
    PLoS One; 2015; 10(6):e0128747. PubMed ID: 26075396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fixed muscle synergies and their potential to improve the intuitive control of myoelectric assistive technology for upper extremities.
    Valk TA; Mouton LJ; Otten E; Bongers RM
    J Neuroeng Rehabil; 2019 Jan; 16(1):6. PubMed ID: 30616663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cross education of strength and skill following unilateral strength training in the upper and lower limbs.
    Green LA; Gabriel DA
    J Neurophysiol; 2018 Aug; 120(2):468-479. PubMed ID: 29668382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Myoelectric Control Learning Using Multi-Session Game-Based Training.
    Tabor A; Bateman S; Scheme E
    IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1680-1689. PubMed ID: 30010580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human adaptation to interaction forces in visuo-motor coordination.
    Huang FC; Gillespie RB; Kuo AD
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):390-7. PubMed ID: 17009499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limb loading enhances skill transfer between augmented and physical reality tasks during limb loss rehabilitation.
    Hunt CL; Sun Y; Wang S; Shehata AW; Hebert JS; Gonzalez-Fernandez M; Kaliki RR; Thakor NV
    J Neuroeng Rehabil; 2023 Jan; 20(1):16. PubMed ID: 36707817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immersive augmented reality system for the training of pattern classification control with a myoelectric prosthesis.
    Boschmann A; Neuhaus D; Vogt S; Kaltschmidt C; Platzner M; Dosen S
    J Neuroeng Rehabil; 2021 Feb; 18(1):25. PubMed ID: 33541376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.