These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34023022)

  • 21. Navigating through metaproteomics data: a logbook of database searching.
    Muth T; Kolmeder CA; Salojärvi J; Keskitalo S; Varjosalo M; Verdam FJ; Rensen SS; Reichl U; de Vos WM; Rapp E; Martens L
    Proteomics; 2015 Oct; 15(20):3439-53. PubMed ID: 25778831
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rumen metaproteomics: Closer to linking rumen microbial function to animal productivity traits.
    Andersen TO; Kunath BJ; Hagen LH; Arntzen MØ; Pope PB
    Methods; 2021 Feb; 186():42-51. PubMed ID: 32758682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A complete and flexible workflow for metaproteomics data analysis based on MetaProteomeAnalyzer and Prophane.
    Schiebenhoefer H; Schallert K; Renard BY; Trappe K; Schmid E; Benndorf D; Riedel K; Muth T; Fuchs S
    Nat Protoc; 2020 Oct; 15(10):3212-3239. PubMed ID: 32859984
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Challenges and perspectives of metaproteomic data analysis.
    Heyer R; Schallert K; Zoun R; Becher B; Saake G; Benndorf D
    J Biotechnol; 2017 Nov; 261():24-36. PubMed ID: 28663049
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metaproteomics: Much More than Measuring Gene Expression in Microbial Communities.
    Kleiner M
    mSystems; 2019 May; 4(3):. PubMed ID: 31117019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Challenges and promise at the interface of metaproteomics and genomics: an overview of recent progress in metaproteogenomic data analysis.
    Schiebenhoefer H; Van Den Bossche T; Fuchs S; Renard BY; Muth T; Martens L
    Expert Rev Proteomics; 2019 May; 16(5):375-390. PubMed ID: 31002542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metagenomic Taxonomy-Guided Database-Searching Strategy for Improving Metaproteomic Analysis.
    Xiao J; Tanca A; Jia B; Yang R; Wang B; Zhang Y; Li J
    J Proteome Res; 2018 Apr; 17(4):1596-1605. PubMed ID: 29436230
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metaproteomics: Sample Preparation and Methodological Considerations.
    Kunath BJ; Minniti G; Skaugen M; Hagen LH; Vaaje-Kolstad G; Eijsink VGH; Pope PB; Arntzen MØ
    Adv Exp Med Biol; 2019; 1073():187-215. PubMed ID: 31236844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metaproteomics of complex microbial communities in biogas plants.
    Heyer R; Kohrs F; Reichl U; Benndorf D
    Microb Biotechnol; 2015 Sep; 8(5):749-63. PubMed ID: 25874383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MAPLE: A Microbiome Analysis Pipeline Enabling Optimal Peptide Search and Comparative Taxonomic and Functional Analysis.
    Huang W; Kane MA
    J Proteome Res; 2021 May; 20(5):2882-2894. PubMed ID: 33848166
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluating de novo sequencing in proteomics: already an accurate alternative to database-driven peptide identification?
    Muth T; Renard BY
    Brief Bioinform; 2018 Sep; 19(5):954-970. PubMed ID: 28369237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metaproteomic strategies and applications for gut microbial research.
    Xiao M; Yang J; Feng Y; Zhu Y; Chai X; Wang Y
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3077-3088. PubMed ID: 28293710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. mPies: a novel metaproteomics tool for the creation of relevant protein databases and automatized protein annotation.
    Werner J; Géron A; Kerssemakers J; Matallana-Surget S
    Biol Direct; 2019 Nov; 14(1):21. PubMed ID: 31727118
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing metaproteomics--The value of models and defined environmental microbial systems.
    Herbst FA; Lünsmann V; Kjeldal H; Jehmlich N; Tholey A; von Bergen M; Nielsen JL; Hettich RL; Seifert J; Nielsen PH
    Proteomics; 2016 Mar; 16(5):783-98. PubMed ID: 26621789
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Soil and leaf litter metaproteomics-a brief guideline from sampling to understanding.
    Keiblinger KM; Fuchs S; Zechmeister-Boltenstern S; Riedel K
    FEMS Microbiol Ecol; 2016 Nov; 92(11):. PubMed ID: 27549116
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generating Sample-Specific Databases for Mass Spectrometry-Based Proteomic Analysis by Using RNA Sequencing.
    Luge T; Sauer S
    Methods Mol Biol; 2016; 1394():219-232. PubMed ID: 26700052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Current progress and critical challenges to overcome in the bioinformatics of mass spectrometry-based metaproteomics.
    Miura N; Okuda S
    Comput Struct Biotechnol J; 2023; 21():1140-1150. PubMed ID: 36817962
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metaproteomics to understand how microbiota function: The crystal ball predicts a promising future.
    Armengaud J
    Environ Microbiol; 2023 Jan; 25(1):115-125. PubMed ID: 36209500
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PepExplorer: a similarity-driven tool for analyzing de novo sequencing results.
    Leprevost FV; Valente RH; Lima DB; Perales J; Melani R; Yates JR; Barbosa VC; Junqueira M; Carvalho PC
    Mol Cell Proteomics; 2014 Sep; 13(9):2480-9. PubMed ID: 24878498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional Profiling of Unfamiliar Microbial Communities Using a Validated De Novo Assembly Metatranscriptome Pipeline.
    Davids M; Hugenholtz F; Martins dos Santos V; Smidt H; Kleerebezem M; Schaap PJ
    PLoS One; 2016; 11(1):e0146423. PubMed ID: 26756338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.