These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 34023399)
1. Structural Basis of Substrate-Independent Phosphorylation in a P4-ATPase Lipid Flippase. Timcenko M; Dieudonné T; Montigny C; Boesen T; Lyons JA; Lenoir G; Nissen P J Mol Biol; 2021 Aug; 433(16):167062. PubMed ID: 34023399 [TBL] [Abstract][Full Text] [Related]
2. Structure and autoregulation of a P4-ATPase lipid flippase. Timcenko M; Lyons JA; Januliene D; Ulstrup JJ; Dieudonné T; Montigny C; Ash MR; Karlsen JL; Boesen T; Kühlbrandt W; Lenoir G; Moeller A; Nissen P Nature; 2019 Jul; 571(7765):366-370. PubMed ID: 31243363 [TBL] [Abstract][Full Text] [Related]
3. A high-yield co-expression system for the purification of an intact Drs2p-Cdc50p lipid flippase complex, critically dependent on and stabilized by phosphatidylinositol-4-phosphate. Azouaoui H; Montigny C; Ash MR; Fijalkowski F; Jacquot A; Grønberg C; López-Marqués RL; Palmgren MG; Garrigos M; le Maire M; Decottignies P; Gourdon P; Nissen P; Champeil P; Lenoir G PLoS One; 2014; 9(11):e112176. PubMed ID: 25393116 [TBL] [Abstract][Full Text] [Related]
4. Transport mechanism of P4 ATPase phosphatidylcholine flippases. Bai L; You Q; Jain BK; Duan HD; Kovach A; Graham TR; Li H Elife; 2020 Dec; 9():. PubMed ID: 33320091 [TBL] [Abstract][Full Text] [Related]
5. High phosphatidylinositol 4-phosphate (PI4P)-dependent ATPase activity for the Drs2p-Cdc50p flippase after removal of its N- and C-terminal extensions. Azouaoui H; Montigny C; Dieudonné T; Champeil P; Jacquot A; Vázquez-Ibar JL; Le Maréchal P; Ulstrup J; Ash MR; Lyons JA; Nissen P; Lenoir G J Biol Chem; 2017 May; 292(19):7954-7970. PubMed ID: 28302728 [TBL] [Abstract][Full Text] [Related]
6. Reconstitution of phospholipid translocase activity with purified Drs2p, a type-IV P-type ATPase from budding yeast. Zhou X; Graham TR Proc Natl Acad Sci U S A; 2009 Sep; 106(39):16586-91. PubMed ID: 19805341 [TBL] [Abstract][Full Text] [Related]
7. Autoinhibition and activation mechanisms of the eukaryotic lipid flippase Drs2p-Cdc50p. Bai L; Kovach A; You Q; Hsu HC; Zhao G; Li H Nat Commun; 2019 Sep; 10(1):4142. PubMed ID: 31515475 [TBL] [Abstract][Full Text] [Related]
8. Phosphatidylserine flipping by the P4-ATPase ATP8A2 is electrogenic. Tadini-Buoninsegni F; Mikkelsen SA; Mogensen LS; Molday RS; Andersen JP Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16332-16337. PubMed ID: 31371510 [TBL] [Abstract][Full Text] [Related]
9. Coordinated Overexpression in Yeast of a P4-ATPase and Its Associated Cdc50 Subunit: The Case of the Drs2p/Cdc50p Lipid Flippase Complex. Azouaoui H; Montigny C; Jacquot A; Barry R; Champeil P; Lenoir G Methods Mol Biol; 2016; 1377():37-55. PubMed ID: 26695021 [TBL] [Abstract][Full Text] [Related]
10. Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae. Huang Y; Takar M; Best JT; Graham TR Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Feb; 1865(2):158581. PubMed ID: 31786280 [TBL] [Abstract][Full Text] [Related]
12. Cryo-EM structures capture the transport cycle of the P4-ATPase flippase. Hiraizumi M; Yamashita K; Nishizawa T; Nureki O Science; 2019 Sep; 365(6458):1149-1155. PubMed ID: 31416931 [TBL] [Abstract][Full Text] [Related]
13. Identification of residues defining phospholipid flippase substrate specificity of type IV P-type ATPases. Baldridge RD; Graham TR Proc Natl Acad Sci U S A; 2012 Feb; 109(6):E290-8. PubMed ID: 22308393 [TBL] [Abstract][Full Text] [Related]
14. Phosphatidylserine stimulation of Drs2p·Cdc50p lipid translocase dephosphorylation is controlled by phosphatidylinositol-4-phosphate. Jacquot A; Montigny C; Hennrich H; Barry R; le Maire M; Jaxel C; Holthuis J; Champeil P; Lenoir G J Biol Chem; 2012 Apr; 287(16):13249-61. PubMed ID: 22351780 [TBL] [Abstract][Full Text] [Related]
15. Directed evolution of a sphingomyelin flippase reveals mechanism of substrate backbone discrimination by a P4-ATPase. Roland BP; Graham TR Proc Natl Acad Sci U S A; 2016 Aug; 113(31):E4460-6. PubMed ID: 27432949 [TBL] [Abstract][Full Text] [Related]
16. Linking phospholipid flippases to vesicle-mediated protein transport. Muthusamy BP; Natarajan P; Zhou X; Graham TR Biochim Biophys Acta; 2009 Jul; 1791(7):612-9. PubMed ID: 19286470 [TBL] [Abstract][Full Text] [Related]
17. Type IV P-type ATPases distinguish mono- versus diacyl phosphatidylserine using a cytofacial exit gate in the membrane domain. Baldridge RD; Xu P; Graham TR J Biol Chem; 2013 Jul; 288(27):19516-27. PubMed ID: 23709217 [TBL] [Abstract][Full Text] [Related]
18. Yeast and human P4-ATPases transport glycosphingolipids using conserved structural motifs. Roland BP; Naito T; Best JT; Arnaiz-Yépez C; Takatsu H; Yu RJ; Shin HW; Graham TR J Biol Chem; 2019 Feb; 294(6):1794-1806. PubMed ID: 30530492 [TBL] [Abstract][Full Text] [Related]
19. Conformational changes of a phosphatidylcholine flippase in lipid membranes. Xu J; He Y; Wu X; Li L Cell Rep; 2022 Mar; 38(11):110518. PubMed ID: 35294892 [TBL] [Abstract][Full Text] [Related]
20. Crossing the membrane-What does it take to flip a phospholipid? Structural and biochemical advances on P4-ATPase flippases. Sai KV; Lee JE J Biol Chem; 2024 Oct; 300(10):107738. PubMed ID: 39233230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]