These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34023696)

  • 81. Boundary-Weighted Domain Adaptive Neural Network for Prostate MR Image Segmentation.
    Zhu Q; Du B; Yan P
    IEEE Trans Med Imaging; 2020 Mar; 39(3):753-763. PubMed ID: 31425022
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Deep learning approaches for neural decoding across architectures and recording modalities.
    Livezey JA; Glaser JI
    Brief Bioinform; 2021 Mar; 22(2):1577-1591. PubMed ID: 33372958
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Content and shape attention network for bladder wall and cancer segmentation in MRIs.
    Dong Q; Huang D; Xu X; Li Z; Liu Y; Lu H; Liu Y
    Comput Biol Med; 2022 Sep; 148():105809. PubMed ID: 35816853
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Kidney Tumor Semantic Segmentation Using Deep Learning: A Survey of State-of-the-Art.
    Abdelrahman A; Viriri S
    J Imaging; 2022 Feb; 8(3):. PubMed ID: 35324610
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Deep Learning for Cardiac Image Segmentation: A Review.
    Chen C; Qin C; Qiu H; Tarroni G; Duan J; Bai W; Rueckert D
    Front Cardiovasc Med; 2020; 7():25. PubMed ID: 32195270
    [TBL] [Abstract][Full Text] [Related]  

  • 86. PENet: Prior evidence deep neural network for bladder cancer staging.
    Zhou X; Yue X; Xu Z; Denoeux T; Chen Y
    Methods; 2022 Nov; 207():20-28. PubMed ID: 36031139
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Automatic Segmentation of Pelvic Cancers Using Deep Learning: State-of-the-Art Approaches and Challenges.
    Kalantar R; Lin G; Winfield JM; Messiou C; Lalondrelle S; Blackledge MD; Koh DM
    Diagnostics (Basel); 2021 Oct; 11(11):. PubMed ID: 34829310
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Segmentation, Detection, and Tracking of Stem Cell Image by Digital Twins and Lightweight Deep Learning.
    Du X; Liu M; Sun Y
    Comput Intell Neurosci; 2022; 2022():6003293. PubMed ID: 35422850
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Non-invasive screening of bladder cancer using digital microfluidics and FLIM technology combined with deep learning.
    Su W; Xu C; Hu J; Chen Q; Yang Y; Ji M; Fei Y; Ma J; Jiang H; Mi L
    J Biophotonics; 2024 Sep; 17(9):e202400192. PubMed ID: 38938144
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Potential of Deep Learning in Quantitative Magnetic Resonance Imaging for Personalized Radiotherapy.
    Gurney-Champion OJ; Landry G; Redalen KR; Thorwarth D
    Semin Radiat Oncol; 2022 Oct; 32(4):377-388. PubMed ID: 36202440
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Editorial for "Evaluation of Spatial Attentive Deep Learning for Automatic Placental Segmentation on Longitudinal MRI".
    Gaga R
    J Magn Reson Imaging; 2023 May; 57(5):1541-1542. PubMed ID: 35979891
    [No Abstract]   [Full Text] [Related]  

  • 92. Editorial for "Implementable Deep Learning for Multi-sequence Proton MRI Lung Segmentation: A Multi-center, Multi-vendor and Multi-disease Study".
    Hadj Bouzid AI; Dournes G
    J Magn Reson Imaging; 2023 Oct; 58(4):1045-1046. PubMed ID: 36847749
    [No Abstract]   [Full Text] [Related]  

  • 93. Integrated multicenter deep learning system for prognostic prediction in bladder cancer.
    He Q; Xiao B; Tan Y; Wang J; Tan H; Peng C; Liang B; Cao Y; Xiao M
    NPJ Precis Oncol; 2024 Oct; 8(1):233. PubMed ID: 39414931
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Editorial for "The Impact of Fatty Infiltration on MRI Segmentation of Lower Limb Muscles in Neuromuscular Diseases: A Comparative Study of Deep Learning Approaches".
    Hanrahan CJ
    J Magn Reson Imaging; 2023 Dec; 58(6):1836-1837. PubMed ID: 37021719
    [No Abstract]   [Full Text] [Related]  

  • 95. Deep learning in MIBC.
    Thomas T
    Nat Rev Urol; 2020 Aug; 17(8):432. PubMed ID: 32467577
    [No Abstract]   [Full Text] [Related]  

  • 96. Deep Learning on Enhanced CT Images Can Predict the Muscular Invasiveness of Bladder Cancer.
    Zhang G; Wu Z; Xu L; Zhang X; Zhang D; Mao L; Li X; Xiao Y; Guo J; Ji Z; Sun H; Jin Z
    Front Oncol; 2021; 11():654685. PubMed ID: 34178641
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Application of artificial intelligence in the diagnosis and treatment of urinary tumors.
    Zhu M; Gu Z; Chen F; Chen X; Wang Y; Zhao G
    Front Oncol; 2024; 14():1440626. PubMed ID: 39188685
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Predicting central cervical lymph node metastasis in papillary thyroid microcarcinoma using deep learning.
    Wang Y; Tan HL; Duan SL; Li N; Ai L; Chang S
    PeerJ; 2024; 12():e16952. PubMed ID: 38563008
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Deep learning models for preoperative T-stage assessment in rectal cancer using MRI: exploring the impact of rectal filling.
    Tian C; Ma X; Lu H; Wang Q; Shao C; Yuan Y; Shen F
    Front Med (Lausanne); 2023; 10():1326324. PubMed ID: 38105894
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Bladder Cancer and Artificial Intelligence: Emerging Applications.
    Laurie MA; Zhou SR; Islam MT; Shkolyar E; Xing L; Liao JC
    Urol Clin North Am; 2024 Feb; 51(1):63-75. PubMed ID: 37945103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.