These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34023868)

  • 1. Biomacromolecule-based photo-thermal agents for tumor treatment.
    Liu B; Jiang F; Sun J; Wang F; Liu K
    J Mater Chem B; 2021 Sep; 9(35):7007-7022. PubMed ID: 34023868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymeric photothermal agents for cancer therapy: recent progress and clinical potential.
    Du C; Wu X; He M; Zhang Y; Zhang R; Dong CM
    J Mater Chem B; 2021 Feb; 9(6):1478-1490. PubMed ID: 33427844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photothermal therapy: a novel potential treatment for prostate cancer.
    Dong Z; Xue K; Verma A; Shi J; Wei Z; Xia X; Wang K; Zhang X
    Biomater Sci; 2024 May; 12(10):2480-2503. PubMed ID: 38592730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in nanomaterials for use in photothermal and photodynamic therapeutics (Review).
    Yang Z; Sun Z; Ren Y; Chen X; Zhang W; Zhu X; Mao Z; Shen J; Nie S
    Mol Med Rep; 2019 Jul; 20(1):5-15. PubMed ID: 31115497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photosensitizer-conjugated Cu-In-S heterostructured nanorods for cancer targeted photothermal/photodynamic synergistic therapy.
    Chen SH; Huang WW; Dehvari K; Ling YC; Ghule AV; Tsai SL; Chang JY
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():793-802. PubMed ID: 30678970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer.
    Lo PC; Rodríguez-Morgade MS; Pandey RK; Ng DKP; Torres T; Dumoulin F
    Chem Soc Rev; 2020 Feb; 49(4):1041-1056. PubMed ID: 31845688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aptamer-Targeted Photodynamic Platforms for Tumor Therapy.
    Yan J; Gao T; Lu Z; Yin J; Zhang Y; Pei R
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):27749-27773. PubMed ID: 34110790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Development of Photothermal Agents (PTAs) Based on Small Organic Molecular Dyes.
    Lv S; Miao Y; Liu D; Song F
    Chembiochem; 2020 Aug; 21(15):2098-2110. PubMed ID: 32202062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Carbon Nanomaterials for Cancer Phototherapy.
    Jiang BP; Zhou B; Lin Z; Liang H; Shen XC
    Chemistry; 2019 Mar; 25(16):3993-4004. PubMed ID: 30328167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale Covalent Organic Framework for Combinatorial Antitumor Photodynamic and Photothermal Therapy.
    Guan Q; Zhou LL; Li YA; Li WY; Wang S; Song C; Dong YB
    ACS Nano; 2019 Nov; 13(11):13304-13316. PubMed ID: 31689082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porphyrin-Based Metal-Organic Framework Compounds as Promising Nanomedicines in Photodynamic Therapy.
    Yu W; Zhen W; Zhang Q; Li Y; Luo H; He J; Liu Y
    ChemMedChem; 2020 Oct; 15(19):1766-1775. PubMed ID: 32715651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent progress and development on polymeric nanomaterials for photothermal therapy: a brief overview.
    Shi Y; Liu M; Deng F; Zeng G; Wan Q; Zhang X; Wei Y
    J Mater Chem B; 2017 Jan; 5(2):194-206. PubMed ID: 32263539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The recent progress on metal-organic frameworks for phototherapy.
    Zheng Q; Liu X; Zheng Y; Yeung KWK; Cui Z; Liang Y; Li Z; Zhu S; Wang X; Wu S
    Chem Soc Rev; 2021 Apr; 50(8):5086-5125. PubMed ID: 33634817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent strategies to improve boron dipyrromethene (BODIPY) for photodynamic cancer therapy: an updated review.
    Kue CS; Ng SY; Voon SH; Kamkaew A; Chung LY; Kiew LV; Lee HB
    Photochem Photobiol Sci; 2018 Nov; 17(11):1691-1708. PubMed ID: 29845993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MnO
    Zhang L; Yang R; Yu H; Xu Z; Kang Y; Cui H; Xue P
    J Mater Chem B; 2021 May; 9(17):3677-3688. PubMed ID: 33949613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A redox-activatable biopolymer-based micelle for sequentially enhanced mitochondria-targeted photodynamic therapy and hypoxia-dependent chemotherapy.
    Li Y; Sutrisno L; Hou Y; Fei Y; Xue C; Hu Y; Li M; Luo Z
    Chem Commun (Camb); 2020 Sep; 56(69):9978-9981. PubMed ID: 32851998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hetero-Core-Shell BiNS-Fe@Fe as a Potential Theranostic Nanoplatform for Multimodal Imaging-Guided Simultaneous Photothermal-Photodynamic and Chemodynamic Treatment.
    Ma S; Xie J; Wang L; Zhou Z; Luo X; Yan J; Ran G
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):10728-10740. PubMed ID: 33645960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Developing Photosensitizers for Photodynamic Cancer Therapy.
    Chen C; Wang J; Li X; Liu X; Han X
    Comb Chem High Throughput Screen; 2017; 20(5):414-422. PubMed ID: 28088891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Killer beacons for combined cancer imaging and therapy.
    Stefflova K; Chen J; Zheng G
    Curr Med Chem; 2007; 14(20):2110-25. PubMed ID: 17691951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photodynamic Anticancer Activities of Multifunctional Cobalt Ferrite Nanoparticles in Various Cancer Cells.
    Park BJ; Choi KH; Nam KC; Ali A; Min JE; Son H; Uhm HS; Kim HJ; Jung JS; Choi EH
    J Biomed Nanotechnol; 2015 Feb; 11(2):226-35. PubMed ID: 26349298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.