These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 34023958)

  • 21. A monoclonal antibody to O-acetyl-GD2 ganglioside and not to GD2 shows potent anti-tumor activity without peripheral nervous system cross-reactivity.
    Alvarez-Rueda N; Desselle A; Cochonneau D; Chaumette T; Clemenceau B; Leprieur S; Bougras G; Supiot S; Mussini JM; Barbet J; Saba J; Paris F; Aubry J; Birklé S
    PLoS One; 2011; 6(9):e25220. PubMed ID: 21966461
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SIRPα-αCD123 fusion antibodies targeting CD123 in conjunction with CD47 blockade enhance the clearance of AML-initiating cells.
    Tahk S; Vick B; Hiller B; Schmitt S; Marcinek A; Perini ED; Leutbecher A; Augsberger C; Reischer A; Tast B; Humpe A; Jeremias I; Subklewe M; Fenn NC; Hopfner KP
    J Hematol Oncol; 2021 Sep; 14(1):155. PubMed ID: 34579739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anti-CD105 Antibody Eliminates Tumor Microenvironment Cells and Enhances Anti-GD2 Antibody Immunotherapy of Neuroblastoma with Activated Natural Killer Cells.
    Wu HW; Sheard MA; Malvar J; Fernandez GE; DeClerck YA; Blavier L; Shimada H; Theuer CP; Sposto R; Seeger RC
    Clin Cancer Res; 2019 Aug; 25(15):4761-4774. PubMed ID: 31068371
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The GD2-specific 14G2a monoclonal antibody induces apoptosis and enhances cytotoxicity of chemotherapeutic drugs in IMR-32 human neuroblastoma cells.
    Kowalczyk A; Gil M; Horwacik I; Odrowaz Z; Kozbor D; Rokita H
    Cancer Lett; 2009 Aug; 281(2):171-82. PubMed ID: 19339105
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting a membrane-proximal epitope on mesothelin increases the tumoricidal activity of a bispecific antibody blocking CD47 on mesothelin-positive tumors.
    Hatterer E; Chauchet X; Richard F; Barba L; Moine V; Chatel L; Broyer L; Pontini G; Bautzova T; Juan F; Calloud S; Bosson N; Charreton M; Masternak K; Buatois V; Shang L
    MAbs; 2020; 12(1):1739408. PubMed ID: 32191151
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combined strategies for effective cancer immunotherapy with a novel anti-CD47 monoclonal antibody.
    Ni H; Cao L; Wu Z; Wang L; Zhou S; Guo X; Gao Y; Jing H; Wu M; Liu Y; Ding J; Zhang P; Zhou Y; Chen B; Xiong Y; Sun J; Prinz B; Baruah H; Geoghegan J; Yu M; Wu W; Liu J
    Cancer Immunol Immunother; 2022 Feb; 71(2):353-363. PubMed ID: 34165607
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A single-valent long-acting human CD47 antagonist enhances antibody directed phagocytic activities.
    Wu F; Qiu Y; Xu Y
    Cancer Immunol Immunother; 2020 Dec; 69(12):2561-2569. PubMed ID: 32583154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CD47 blockade augmentation of trastuzumab antitumor efficacy dependent on antibody-dependent cellular phagocytosis.
    Tsao LC; Crosby EJ; Trotter TN; Agarwal P; Hwang BJ; Acharya C; Shuptrine CW; Wang T; Wei J; Yang X; Lei G; Liu CX; Rabiola CA; Chodosh LA; Muller WJ; Lyerly HK; Hartman ZC
    JCI Insight; 2019 Dec; 4(24):. PubMed ID: 31689243
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting macrophage checkpoint inhibitor SIRPα for anticancer therapy.
    Liu J; Xavy S; Mihardja S; Chen S; Sompalli K; Feng D; Choi T; Agoram B; Majeti R; Weissman IL; Volkmer JP
    JCI Insight; 2020 Jun; 5(12):. PubMed ID: 32427583
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies.
    Weiskopf K; Ring AM; Ho CC; Volkmer JP; Levin AM; Volkmer AK; Ozkan E; Fernhoff NB; van de Rijn M; Weissman IL; Garcia KC
    Science; 2013 Jul; 341(6141):88-91. PubMed ID: 23722425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel fully human anti-CD47 antibodies stimulate phagocytosis and promote elimination of AML cells.
    Wang C; Sun C; Li M; Xia B; Wang Y; Zhang L; Zhang Y; Wang J; Sun F; Lu S; Zhu J; Huang J; Zhang Y
    J Cell Physiol; 2021 Jun; 236(6):4470-4481. PubMed ID: 33206395
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fenretinide sensitizes multidrug-resistant human neuroblastoma cells to antibody-independent and ch14.18-mediated NK cell cytotoxicity.
    Shibina A; Seidel D; Somanchi SS; Lee DA; Stermann A; Maurer BJ; Lode HN; Reynolds CP; Huebener N
    J Mol Med (Berl); 2013 Apr; 91(4):459-72. PubMed ID: 23052481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combining CD47 blockade with trastuzumab eliminates HER2-positive breast cancer cells and overcomes trastuzumab tolerance.
    Upton R; Banuelos A; Feng D; Biswas T; Kao K; McKenna K; Willingham S; Ho PY; Rosental B; Tal MC; Raveh T; Volkmer JP; Pegram MD; Weissman IL
    Proc Natl Acad Sci U S A; 2021 Jul; 118(29):. PubMed ID: 34257155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity.
    Ring NG; Herndler-Brandstetter D; Weiskopf K; Shan L; Volkmer JP; George BM; Lietzenmayer M; McKenna KM; Naik TJ; McCarty A; Zheng Y; Ring AM; Flavell RA; Weissman IL
    Proc Natl Acad Sci U S A; 2017 Dec; 114(49):E10578-E10585. PubMed ID: 29158380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Macrocyclic Peptide-Mediated Blockade of the CD47-SIRPα Interaction as a Potential Cancer Immunotherapy.
    Hazama D; Yin Y; Murata Y; Matsuda M; Okamoto T; Tanaka D; Terasaka N; Zhao J; Sakamoto M; Kakuchi Y; Saito Y; Kotani T; Nishimura Y; Nakagawa A; Suga H; Matozaki T
    Cell Chem Biol; 2020 Sep; 27(9):1181-1191.e7. PubMed ID: 32640189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SIRPα-Antibody Fusion Proteins Selectively Bind and Eliminate Dual Antigen-Expressing Tumor Cells.
    Piccione EC; Juarez S; Tseng S; Liu J; Stafford M; Narayanan C; Wang L; Weiskopf K; Majeti R
    Clin Cancer Res; 2016 Oct; 22(20):5109-5119. PubMed ID: 27126995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A homogeneous SIRPα-CD47 cell-based, ligand-binding assay: Utility for small molecule drug development in immuno-oncology.
    Burgess TL; Amason JD; Rubin JS; Duveau DY; Lamy L; Roberts DD; Farrell CL; Inglese J; Thomas CJ; Miller TW
    PLoS One; 2020; 15(4):e0226661. PubMed ID: 32240171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeting CD47 in Anaplastic Thyroid Carcinoma Enhances Tumor Phagocytosis by Macrophages and Is a Promising Therapeutic Strategy.
    Schürch CM; Roelli MA; Forster S; Wasmer MH; Brühl F; Maire RS; Di Pancrazio S; Ruepp MD; Giger R; Perren A; Schmitt AM; Krebs P; Charles RP; Dettmer MS
    Thyroid; 2019 Jul; 29(7):979-992. PubMed ID: 30938231
    [No Abstract]   [Full Text] [Related]  

  • 39. Elimination of tumor by CD47/PD-L1 dual-targeting fusion protein that engages innate and adaptive immune responses.
    Liu B; Guo H; Xu J; Qin T; Guo Q; Gu N; Zhang D; Qian W; Dai J; Hou S; Wang H; Guo Y
    MAbs; 2018; 10(2):315-324. PubMed ID: 29182441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of CD47-SIRPα immune checkpoint in tumor immune evasion and innate immunotherapy.
    Li Z; Li Y; Gao J; Fu Y; Hua P; Jing Y; Cai M; Wang H; Tong T
    Life Sci; 2021 May; 273():119150. PubMed ID: 33662426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.