These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 34024597)

  • 41. The potential of 3-nitrooxypropanol to lower enteric methane emissions from beef cattle.
    Romero-Perez A; Okine EK; McGinn SM; Guan LL; Oba M; Duval SM; Kindermann M; Beauchemin KA
    J Anim Sci; 2014 Oct; 92(10):4682-93. PubMed ID: 25184838
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Short communication: Variability in fermentation end-products and methanogen communities in different rumen sites of dairy cows.
    Ma Z; Wang R; Wang M; Zhang X; Mao H; Tan Z
    J Dairy Sci; 2018 Jun; 101(6):5153-5158. PubMed ID: 29779558
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prevotella bryantii 25A used as a probiotic in early-lactation dairy cows: effect on ruminal fermentation characteristics, milk production, and milk composition.
    Chiquette J; Allison MJ; Rasmussen MA
    J Dairy Sci; 2008 Sep; 91(9):3536-43. PubMed ID: 18765612
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular hydrogen produced by elemental magnesium inhibits rumen fermentation and enhances methanogenesis in dairy cows.
    Ma ZY; Zhang XM; Wang M; Wang R; Jiang ZY; Tan ZL; Gao FX; Muhammed A
    J Dairy Sci; 2019 Jun; 102(6):5566-5576. PubMed ID: 30981486
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluating the effects of Lactobacillus animalis and Propionibacterium freudenreichii on performance and rumen and fecal measures in lactating dairy cows.
    Lawrence M; Polukis S; Barnard AM; Miller MA; Kung L; Gressley TF
    J Dairy Sci; 2021 Apr; 104(4):4119-4133. PubMed ID: 33612206
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of feeding canola meal or wheat dried distillers grains with solubles as a major protein source in low- or high-crude protein diets on ruminal fermentation, omasal flow, and production in cows.
    Mutsvangwa T; Kiran D; Abeysekara S
    J Dairy Sci; 2016 Feb; 99(2):1216-1227. PubMed ID: 26709161
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets.
    Bayat AR; Kairenius P; Stefański T; Leskinen H; Comtet-Marre S; Forano E; Chaucheyras-Durand F; Shingfield KJ
    J Dairy Sci; 2015 May; 98(5):3166-81. PubMed ID: 25726099
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production.
    Hristov AN; Oh J; Giallongo F; Frederick TW; Harper MT; Weeks HL; Branco AF; Moate PJ; Deighton MH; Williams SR; Kindermann M; Duval S
    Proc Natl Acad Sci U S A; 2015 Aug; 112(34):10663-8. PubMed ID: 26229078
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of partial mixed rations and supplement amounts on milk production and composition, ruminal fermentation, bacterial communities, and ruminal acidosis.
    Golder HM; Denman SE; McSweeney C; Wales WJ; Auldist MJ; Wright MM; Marett LC; Greenwood JS; Hannah MC; Celi P; Bramley E; Lean IJ
    J Dairy Sci; 2014 Sep; 97(9):5763-85. PubMed ID: 24997657
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Methanogenic population and CH₄ production in swedish dairy cows fed different levels of forage.
    Danielsson R; Schnürer A; Arthurson V; Bertilsson J
    Appl Environ Microbiol; 2012 Sep; 78(17):6172-9. PubMed ID: 22752163
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of feeding frequency and oil supplementation on feeding behavior, ruminal fermentation, digestibility, blood metabolites, and milk performance in late-lactation cows fed a high-forage diet.
    Mirzaei-Alamouti H; Akbari-Pabandi K; Mansouryar M; Sirjani MA; Cieslak A; Szumacher-Strabel M; Patra AK; Vazirigohar M
    J Dairy Sci; 2020 Dec; 103(12):11424-11438. PubMed ID: 33222855
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ruminal Degradation of Rumen-Protected Glucose Influences the Ruminal Microbiota and Metabolites in Early-Lactation Dairy Cows.
    Wang Y; Nan X; Zhao Y; Wang Y; Jiang L; Xiong B
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33097510
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impact of a Saccharomyces cerevisiae fermentation product during an intestinal barrier challenge in lactating Holstein cows on ileal microbiota and markers of tissue structure and immunity.
    Jiang Q; Sherlock DN; Elolimy AA; Vailati-Riboni M; Yoon I; Loor JJ
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 37721866
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of 3-nitrooxypropanol and canola oil to mitigate enteric methane emissions of beef cattle results in distinctly different effects on the rumen microbial community.
    Gruninger RJ; Zhang XM; Smith ML; Kung L; Vyas D; McGinn SM; Kindermann M; Wang M; Tan ZL; Beauchemin KA
    Anim Microbiome; 2022 May; 4(1):35. PubMed ID: 35642048
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differences in the rumen methanogen populations of lactating Jersey and Holstein dairy cows under the same diet regimen.
    King EE; Smith RP; St-Pierre B; Wright AD
    Appl Environ Microbiol; 2011 Aug; 77(16):5682-7. PubMed ID: 21705541
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows.
    van Gastelen S; Visker MHPW; Edwards JE; Antunes-Fernandes EC; Hettinga KA; Alferink SJJ; Hendriks WH; Bovenhuis H; Smidt H; Dijkstra J
    J Dairy Sci; 2017 Nov; 100(11):8939-8957. PubMed ID: 28918153
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep.
    Martínez-Fernández G; Abecia L; Arco A; Cantalapiedra-Hijar G; Martín-García AI; Molina-Alcaide E; Kindermann M; Duval S; Yáñez-Ruiz DR
    J Dairy Sci; 2014; 97(6):3790-9. PubMed ID: 24731636
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Flaxseed supplementation decreases methanogenic gene abundance in the rumen of dairy cows.
    Li L; Schoenhals KE; Brady PA; Estill CT; Perumbakkam S; Craig AM
    Animal; 2012 Nov; 6(11):1784-7. PubMed ID: 22717375
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of concentrate level on enteric methane emissions, production performance, and rumen fermentation of Jersey cows grazing kikuyu-dominant pasture during summer.
    van Wyngaard JDV; Meeske R; Erasmus LJ
    J Dairy Sci; 2018 Nov; 101(11):9954-9966. PubMed ID: 30197131
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A fibrolytic enzyme additive for lactating Holstein cow diets: ruminal fermentation, rumen microbial populations, and enteric methane emissions.
    Chung YH; Zhou M; Holtshausen L; Alexander TW; McAllister TA; Guan LL; Oba M; Beauchemin KA
    J Dairy Sci; 2012 Mar; 95(3):1419-27. PubMed ID: 22365224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.