These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 34024866)
1. Improvement of Detection Limits for Particle Contamination by Confocal Configuration in X-Ray Fluorescence Microscope. Nakano H; Komatani S; Matsuyama T; Tsuji K Anal Sci; 2021 Oct; 37(10):1447-1451. PubMed ID: 34024866 [TBL] [Abstract][Full Text] [Related]
2. [Application of Three Dimensional Confocal Micro X-Ray Fluorescence Technology Based on Polycapillary X-Ray Lens in Analysis of Rock and Mineral Samples]. Li FZ; Liu ZG; Sun TX; Yi LT; Zhao WG; He JL; Peng S; Wang LL; Zhao GC; Ding XL Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Sep; 35(9):2487-91. PubMed ID: 26669153 [TBL] [Abstract][Full Text] [Related]
4. Confocal micro-X-ray fluorescence analysis for difference identification of ceramic samples. Mori K; Hourai T; Matsuyama T; Zhuo S; Tsuji K Anal Sci; 2024 Mar; 40(3):367-373. PubMed ID: 38133858 [TBL] [Abstract][Full Text] [Related]
5. In-situ and elementally resolved determination of the thickness uniformity of multi-ply films by confocal micro XRF. Peng S; Liu Z; Sun T; Wang G; Ma Y; Ding X Appl Radiat Isot; 2014 Aug; 90():84-8. PubMed ID: 24705010 [TBL] [Abstract][Full Text] [Related]
6. X-ray Fluorescence Spectroscopy Features of Micro- and Nanoscale Copper and Nickel Particle Compositions. Chebakova KA; Dzidziguri EL; Sidorova EN; Vasiliev AA; Ozherelkov DY; Pelevin IA; Gromov AA; Nalivaiko AY Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578704 [TBL] [Abstract][Full Text] [Related]
7. Element-specific detection in capillary electrophoresis using X-ray fluorescence spectroscopy. Mann SE; Ringo MC; Shea-McCarthy G; Penner-Hahn J; Evans CE Anal Chem; 2000 Apr; 72(8):1754-8. PubMed ID: 10784138 [TBL] [Abstract][Full Text] [Related]
8. CALIBRATION OF A TABLETOP CONFOCAL MICROBEAM X-RAY FLUORESCENCE SPECTROMETER FOR A QUANTITATIVE DEPTH PROFILES EVALUATION. Prokeš R; Trojek T Radiat Prot Dosimetry; 2019 Dec; 186(2-3):268-273. PubMed ID: 31845991 [TBL] [Abstract][Full Text] [Related]
9. Application of confocal 3D micro-XRF for solid/liquid interface analysis. Tsuji K; Yonehara T; Nakano K Anal Sci; 2008 Jan; 24(1):99-103. PubMed ID: 18187856 [TBL] [Abstract][Full Text] [Related]
10. Confocal micro-x-ray fluorescence spectrometer for light element analysis. Smolek S; Pemmer B; Fölser M; Streli C; Wobrauschek P Rev Sci Instrum; 2012 Aug; 83(8):083703. PubMed ID: 22938299 [TBL] [Abstract][Full Text] [Related]
11. [Application of confocal micro-beam X-ray fluorescence in nondestructive scanning analysis of the distribution of elements in a single hair]. Liu HH; Liu ZG; Sun TX; Peng S; Zhao WG; Sun WY; Li YD; Lin XY; Zhao GC; Luo P; Ding XL Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Nov; 33(11):3147-50. PubMed ID: 24555400 [TBL] [Abstract][Full Text] [Related]
12. Comparing the detection of iron-based pottery pigment on a carbon-coated sherd by SEM-EDS and by Micro-XRF-SEM. Pendleton MW; Washburn DK; Ellis EA; Pendleton BB Yale J Biol Med; 2014 Mar; 87(1):15-20. PubMed ID: 24600333 [TBL] [Abstract][Full Text] [Related]
13. Grazing-exit and micro X-ray fluorescence analyses for chemical microchips. Tsuji K; Emoto T; Nishida Y; Tamaki E; Kikutani Y; Hibara A; Kitamori T Anal Sci; 2005 Jul; 21(7):799-803. PubMed ID: 16038499 [TBL] [Abstract][Full Text] [Related]
14. Direct identification and analysis of heavy metals in solution (Hg, Cu, Pb, Zn, Ni) by use of in situ electrochemical X-ray fluorescence. O'Neil GD; Newton ME; Macpherson JV Anal Chem; 2015; 87(9):4933-40. PubMed ID: 25860820 [TBL] [Abstract][Full Text] [Related]
15. Comparison of two confocal micro-XRF spectrometers with different design aspects. Smolek S; Nakazawa T; Tabe A; Nakano K; Tsuji K; Streli C; Wobrauschek P Xray Spectrom; 2014 Mar; 43(2):93-101. PubMed ID: 26430286 [TBL] [Abstract][Full Text] [Related]
16. Signal-to-noise ratio optimization in X-ray fluorescence spectrometry for chromium contamination analysis. An S; Reza S; Norlin B; Fröjdh C; Thungström G Talanta; 2021 Aug; 230():122236. PubMed ID: 33934759 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical X-ray fluorescence spectroscopy for trace heavy metal analysis: enhancing X-ray fluorescence detection capabilities by four orders of magnitude. Hutton LA; O'Neil GD; Read TL; Ayres ZJ; Newton ME; Macpherson JV Anal Chem; 2014 May; 86(9):4566-72. PubMed ID: 24701959 [TBL] [Abstract][Full Text] [Related]
18. [Determination of Cr, Cu, Zn, Pb and As in soil by field portable X-ray fluorescence spectrometry]. Lu AX; Wang JH; Pan LG; Han P; Han Y Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Oct; 30(10):2848-52. PubMed ID: 21137436 [TBL] [Abstract][Full Text] [Related]
19. Micro X-ray fluorescence (μ-XRF) methodology for quantitative elemental imaging of Al-Zn-Mg-Cu alloys with varying chemical compositions. Yang Z; Yang L; Zhao L; Huang D; Li J; Chen X; Shen X; Wang H Talanta; 2024 Mar; 269():125407. PubMed ID: 37988824 [TBL] [Abstract][Full Text] [Related]
20. Depth Elemental Imaging during Corrosion of Hot-Dip Galvanized Steel Sheet by Confocal Micro XRF Analysis. Akioka K; Doi T; Mita S; Matsuyama T; Tsuji K Anal Sci; 2020 Jan; 36(1):55-59. PubMed ID: 31761815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]