These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34025230)

  • 1. KCa3.1 Impairment Is Not Just a Slow Afterthought in Epilepsy.
    Gross C
    Epilepsy Curr; 2020; 20(4):211-213. PubMed ID: 34025230
    [No Abstract]   [Full Text] [Related]  

  • 2. Protein Kinase A-Mediated Suppression of the Slow Afterhyperpolarizing KCa3.1 Current in Temporal Lobe Epilepsy.
    Tiwari MN; Mohan S; Biala Y; Yaari Y
    J Neurosci; 2019 Dec; 39(50):9914-9926. PubMed ID: 31672789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting of microglial KCa3.1 channels by TRAM-34 exacerbates hippocampal neurodegeneration and does not affect ictogenesis and epileptogenesis in chronic temporal lobe epilepsy models.
    Ongerth T; Russmann V; Fischborn S; Boes K; Siegl C; Potschka H
    Eur J Pharmacol; 2014 Oct; 740():72-80. PubMed ID: 25016931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca
    Roshchin MV; Ierusalimsky VN; Balaban PM; Nikitin ES
    Sci Rep; 2020 Sep; 10(1):14484. PubMed ID: 32879404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a new activator of KCa2 and KCa3.1 potassium channels, potentiates the endothelium-derived hyperpolarizing factor response and lowers blood pressure.
    Sankaranarayanan A; Raman G; Busch C; Schultz T; Zimin PI; Hoyer J; Köhler R; Wulff H
    Mol Pharmacol; 2009 Feb; 75(2):281-95. PubMed ID: 18955585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nav1.6 but not KCa3.1 channels contribute to heterogeneity in coding abilities and dynamics of action potentials in the L5 neocortical pyramidal neurons.
    Ierusalimsky VN; Balaban PM; Nikitin ES
    Biochem Biophys Res Commun; 2022 Jul; 615():102-108. PubMed ID: 35609414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Potassium Channel KCa3.1 Represents a Valid Pharmacological Target for Astrogliosis-Induced Neuronal Impairment in a Mouse Model of Alzheimer's Disease.
    Wei T; Yi M; Gu W; Hou L; Lu Q; Yu Z; Chen H
    Front Pharmacol; 2016; 7():528. PubMed ID: 28105015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KCa3.1 constitutes a pharmacological target for astrogliosis associated with Alzheimer's disease.
    Yi M; Yu P; Lu Q; Geller HM; Yu Z; Chen H
    Mol Cell Neurosci; 2016 Oct; 76():21-32. PubMed ID: 27567685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potassium channel KCa3.1 represents a valid pharmacological target for microgliosis-induced neuronal impairment in a mouse model of Parkinson's disease.
    Lu J; Dou F; Yu Z
    J Neuroinflammation; 2019 Dec; 16(1):273. PubMed ID: 31878950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. K
    Bukhari M; Deng H; Sipes D; Ruane-Foster M; Purdy K; Woodworth CD; Sur S; Samways DSK
    J Biol Chem; 2021; 296():100084. PubMed ID: 33199365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KCa3.1 ion channel: A novel therapeutic target for corneal fibrosis.
    Anumanthan G; Gupta S; Fink MK; Hesemann NP; Bowles DK; McDaniel LM; Muhammad M; Mohan RR
    PLoS One; 2018; 13(3):e0192145. PubMed ID: 29554088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional KCa3.1 channels regulate steroid insensitivity in bronchial smooth muscle cells.
    Chachi L; Shikotra A; Duffy SM; Tliba O; Brightling C; Bradding P; Amrani Y
    J Immunol; 2013 Sep; 191(5):2624-2636. PubMed ID: 23904164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced glycation end products impair K(Ca)3.1- and K(Ca)2.3-mediated vasodilatation via oxidative stress in rat mesenteric arteries.
    Zhao LM; Wang Y; Ma XZ; Wang NP; Deng XL
    Pflugers Arch; 2014 Feb; 466(2):307-17. PubMed ID: 23873353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of KCa3.1 Channels Suppresses Atrial Fibrillation via the Attenuation of Macrophage Pro-inflammatory Polarization in a Canine Model With Prolonged Rapid Atrial Pacing.
    He S; Wang Y; Yao Y; Cao Z; Yin J; Zi L; Chen H; Fu Y; Wang X; Zhao Q
    Front Cardiovasc Med; 2021; 8():656631. PubMed ID: 34136541
    [No Abstract]   [Full Text] [Related]  

  • 15. Junctophilin Proteins Tether a Cav1-RyR2-KCa3.1 Tripartite Complex to Regulate Neuronal Excitability.
    Sahu G; Wazen RM; Colarusso P; Chen SRW; Zamponi GW; Turner RW
    Cell Rep; 2019 Aug; 28(9):2427-2442.e6. PubMed ID: 31461656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prominent role of KCa3.1 in endothelium-derived hyperpolarizing factor-type dilations and conducted responses in the microcirculation in vivo.
    Wölfle SE; Schmidt VJ; Hoyer J; Köhler R; de Wit C
    Cardiovasc Res; 2009 Jun; 82(3):476-83. PubMed ID: 19218287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exenatide Inhibits the K
    Dong P; Liu M; Liu C
    Acta Cardiol Sin; 2017 Nov; 33(6):648-655. PubMed ID: 29167619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. K
    Mohr CJ; Gross D; Sezgin EC; Steudel FA; Ruth P; Huber SM; Lukowski R
    Cancers (Basel); 2019 Sep; 11(9):. PubMed ID: 31480522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of Retrograde Trafficking of KCa3.1 in a Polarized Epithelium.
    Lee BS; Devor DC; Hamilton KL
    Front Physiol; 2017; 8():489. PubMed ID: 28769813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pancreatic K
    Soret B; Hense J; Lüdtke S; Thale I; Schwab A; Düfer M
    Biol Chem; 2023 Mar; 404(4):339-353. PubMed ID: 36571487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.