These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 34025426)
1. Integrated Isogenic Human Induced Pluripotent Stem Cell-Based Liver and Heart Microphysiological Systems Predict Unsafe Drug-Drug Interaction. Lee-Montiel FT; Laemmle A; Charwat V; Dumont L; Lee CS; Huebsch N; Okochi H; Hancock MJ; Siemons B; Boggess SC; Goswami I; Miller EW; Willenbring H; Healy KE Front Pharmacol; 2021; 12():667010. PubMed ID: 34025426 [TBL] [Abstract][Full Text] [Related]
2. Characterizing the reproducibility in using a liver microphysiological system for assaying drug toxicity, metabolism, and accumulation. Rubiano A; Indapurkar A; Yokosawa R; Miedzik A; Rosenzweig B; Arefin A; Moulin CM; Dame K; Hartman N; Volpe DA; Matta MK; Hughes DJ; Strauss DG; Kostrzewski T; Ribeiro AJS Clin Transl Sci; 2021 May; 14(3):1049-1061. PubMed ID: 33382907 [TBL] [Abstract][Full Text] [Related]
3. Microphysiological systems meet hiPSC technology - New tools for disease modeling of liver infections in basic research and drug development. Raasch M; Fritsche E; Kurtz A; Bauer M; Mosig AS Adv Drug Deliv Rev; 2019 Feb; 140():51-67. PubMed ID: 29908880 [TBL] [Abstract][Full Text] [Related]
4. [Development of Microphysiological Systems (MPSs) Based on Microfluidic Technology for Drug Discovery in Japan]. Kimura H Yakugaku Zasshi; 2023; 143(1):39-44. PubMed ID: 36596538 [TBL] [Abstract][Full Text] [Related]
5. Cytochrome P450 Involvement in the biotransformation of cisapride and racemic norcisapride in vitro: differential activity of individual human CYP3A isoforms. Pearce RE; Gotschall RR; Kearns GL; Leeder JS Drug Metab Dispos; 2001 Dec; 29(12):1548-54. PubMed ID: 11717173 [TBL] [Abstract][Full Text] [Related]
6. Consideration of Commercially Available Hepatocytes as Cell Sources for Liver-Microphysiological Systems by Comparing Liver Characteristics. Horiuchi S; Kuroda Y; Komizu Y; Ishida S Pharmaceutics; 2022 Dec; 15(1):. PubMed ID: 36678684 [TBL] [Abstract][Full Text] [Related]
7. Establishing quasi-steady state operations of microphysiological systems (MPS) using tissue-specific metabolic dependencies. Maass C; Dallas M; LaBarge ME; Shockley M; Valdez J; Geishecker E; Stokes CL; Griffith LG; Cirit M Sci Rep; 2018 May; 8(1):8015. PubMed ID: 29789564 [TBL] [Abstract][Full Text] [Related]
9. Validating the Arrhythmogenic Potential of High-, Intermediate-, and Low-Risk Drugs in a Human-Induced Pluripotent Stem Cell-Derived Cardiac Microphysiological System. Charwat V; Charrez B; Siemons BA; Finsberg H; Jæger KH; Edwards AG; Huebsch N; Wall S; Miller E; Tveito A; Healy KE ACS Pharmacol Transl Sci; 2022 Aug; 5(8):652-667. PubMed ID: 35983280 [TBL] [Abstract][Full Text] [Related]
10. Integrated Gut and Liver Microphysiological Systems for Quantitative In Vitro Pharmacokinetic Studies. Tsamandouras N; Chen WLK; Edington CD; Stokes CL; Griffith LG; Cirit M AAPS J; 2017 Sep; 19(5):1499-1512. PubMed ID: 28752430 [TBL] [Abstract][Full Text] [Related]
11. A high-throughput microfluidic microphysiological system (PREDICT-96) to recapitulate hepatocyte function in dynamic, re-circulating flow conditions. Tan K; Keegan P; Rogers M; Lu M; Gosset JR; Charest J; Bale SS Lab Chip; 2019 Apr; 19(9):1556-1566. PubMed ID: 30855604 [TBL] [Abstract][Full Text] [Related]
12. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology. Watson DE; Hunziker R; Wikswo JP Exp Biol Med (Maywood); 2017 Oct; 242(16):1559-1572. PubMed ID: 29065799 [TBL] [Abstract][Full Text] [Related]
13. Human iPSC-based cardiac microphysiological system for drug screening applications. Mathur A; Loskill P; Shao K; Huebsch N; Hong S; Marcus SG; Marks N; Mandegar M; Conklin BR; Lee LP; Healy KE Sci Rep; 2015 Mar; 5():8883. PubMed ID: 25748532 [TBL] [Abstract][Full Text] [Related]
14. Characterization of rat or human hepatocytes cultured in microphysiological systems (MPS) to identify hepatotoxicity. Chang SY; Voellinger JL; Van Ness KP; Chapron B; Shaffer RM; Neumann T; White CC; Kavanagh TJ; Kelly EJ; Eaton DL Toxicol In Vitro; 2017 Apr; 40():170-183. PubMed ID: 28089783 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic Cell Culture Platforms to Capture Hepatic Physiology and Complex Cellular Interactions. Bale SS; Borenstein JT Drug Metab Dispos; 2018 Nov; 46(11):1638-1646. PubMed ID: 30115643 [TBL] [Abstract][Full Text] [Related]
16. Perspectives and Challenges of Pluripotent Stem Cells in Cardiac Arrhythmia Research. Goedel A; My I; Sinnecker D; Moretti A Curr Cardiol Rep; 2017 Mar; 19(3):23. PubMed ID: 28220464 [TBL] [Abstract][Full Text] [Related]
17. Inversion and computational maturation of drug response using human stem cell derived cardiomyocytes in microphysiological systems. Tveito A; Jæger KH; Huebsch N; Charrez B; Edwards AG; Wall S; Healy KE Sci Rep; 2018 Dec; 8(1):17626. PubMed ID: 30514966 [TBL] [Abstract][Full Text] [Related]
18. The involvement of flavin-containing monooxygenase but not CYP3A4 in metabolism of itopride hydrochloride, a gastroprokinetic agent: comparison with cisapride and mosapride citrate. Mushiroda T; Douya R; Takahara E; Nagata O Drug Metab Dispos; 2000 Oct; 28(10):1231-7. PubMed ID: 10997945 [TBL] [Abstract][Full Text] [Related]
19. Interaction of cisapride with the human cytochrome P450 system: metabolism and inhibition studies. Desta Z; Soukhova N; Mahal SK; Flockhart DA Drug Metab Dispos; 2000 Jul; 28(7):789-800. PubMed ID: 10859153 [TBL] [Abstract][Full Text] [Related]
20. Modeling Reentry in the Short QT Syndrome With Human-Induced Pluripotent Stem Cell-Derived Cardiac Cell Sheets. Shinnawi R; Shaheen N; Huber I; Shiti A; Arbel G; Gepstein A; Ballan N; Setter N; Tijsen AJ; Borggrefe M; Gepstein L J Am Coll Cardiol; 2019 May; 73(18):2310-2324. PubMed ID: 31072576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]