BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 34025931)

  • 1. CRISPR/Cas9 based genome editing for targeted transcriptional control in triple-negative breast cancer.
    Deepak Singh D; Han I; Choi EH; Yadav DK
    Comput Struct Biotechnol J; 2021; 19():2384-2397. PubMed ID: 34025931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9 as a therapeutic tool for triple negative breast cancer: from bench to clinics.
    Tiwari PK; Ko TH; Dubey R; Chouhan M; Tsai LW; Singh HN; Chaubey KK; Dayal D; Chiang CW; Kumar S
    Front Mol Biosci; 2023; 10():1214489. PubMed ID: 37469704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breast Cancer Transcriptional Regulatory Network Reprogramming by using the CRISPR/Cas9 System: An Oncogenetics Perspective.
    Singh DD; Verma R; Tripathi SK; Sahu R; Trivedi P; Yadav DK
    Curr Top Med Chem; 2021; 21(31):2800-2813. PubMed ID: 34477520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas genome editing in triple negative breast cancer: Current situation and future directions.
    Fu L; Li Z; Ren Y; Yu H; Liu B; Qiu Y
    Biochem Pharmacol; 2023 Mar; 209():115449. PubMed ID: 36754153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer.
    Wang SW; Gao C; Zheng YM; Yi L; Lu JC; Huang XY; Cai JB; Zhang PF; Cui YH; Ke AW
    Mol Cancer; 2022 Feb; 21(1):57. PubMed ID: 35189910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of mouse and human preimplantation development following POU5F1 CRISPR/Cas9 targeting reveals interspecies differences.
    Stamatiadis P; Boel A; Cosemans G; Popovic M; Bekaert B; Guggilla R; Tang M; De Sutter P; Van Nieuwerburgh F; Menten B; Stoop D; Chuva de Sousa Lopes SM; Coucke P; Heindryckx B
    Hum Reprod; 2021 Apr; 36(5):1242-1252. PubMed ID: 33609360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Insights into the Therapeutic Applications of CRISPR/Cas9 Genome Editing in Breast Cancer.
    Ahmed M; Daoud GH; Mohamed A; Harati R
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34066014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulating CRISPR/Cas9 genome-editing activity by small molecules.
    Chen S; Chen D; Liu B; Haisma HJ
    Drug Discov Today; 2022 Apr; 27(4):951-966. PubMed ID: 34823004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomaterial-assisted CRISPR gene-engineering - A hallmark for triple-negative breast cancer therapeutics advancement.
    Farheen J; Hosmane NS; Zhao R; Zhao Q; Iqbal MZ; Kong X
    Mater Today Bio; 2022 Dec; 16():100450. PubMed ID: 36267139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can genetic engineering-based methods for gene function identification be eclipsed by genome editing in plants? A comparison of methodologies.
    Amritha PP; Shah JM
    Mol Genet Genomics; 2021 May; 296(3):485-500. PubMed ID: 33751237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-editing approaches and applications: a brief review on CRISPR technology and its role in cancer.
    Siva N; Gupta S; Gupta A; Shukla JN; Malik B; Shukla N
    3 Biotech; 2021 Mar; 11(3):146. PubMed ID: 33732568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9 application in cancer therapy: a pioneering genome editing tool.
    Shojaei Baghini S; Gardanova ZR; Abadi SAH; Zaman BA; İlhan A; Shomali N; Adili A; Moghaddar R; Yaseri AF
    Cell Mol Biol Lett; 2022 May; 27(1):35. PubMed ID: 35508982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic genome editing of triple-negative breast tumors using a noncationic and deformable nanolipogel.
    Guo P; Yang J; Huang J; Auguste DT; Moses MA
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18295-18303. PubMed ID: 31451668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering nucleic acid chemistry for precise and controllable CRISPR/Cas9 genome editing.
    Cai W; Wang M
    Sci Bull (Beijing); 2019 Dec; 64(24):1841-1849. PubMed ID: 36659580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas9, A Promising Therapeutic Tool for Cancer Therapy: A Review.
    Akram F; Ikram Ul Haq ; Ahmed Z; Khan H; Ali MS
    Protein Pept Lett; 2020; 27(10):931-944. PubMed ID: 32264803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A glance at genome editing with CRISPR-Cas9 technology.
    Barman A; Deb B; Chakraborty S
    Curr Genet; 2020 Jun; 66(3):447-462. PubMed ID: 31691023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer.
    Zhang H; Qin C; An C; Zheng X; Wen S; Chen W; Liu X; Lv Z; Yang P; Xu W; Gao W; Wu Y
    Mol Cancer; 2021 Oct; 20(1):126. PubMed ID: 34598686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of CRISPR/Cas9 gene-editing tools for developing models in drug discovery.
    Ahmad G; Amiji M
    Drug Discov Today; 2018 Mar; 23(3):519-533. PubMed ID: 29326075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.