These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 34025949)

  • 1. Assessment of transferable forcefields for protein simulations attests improved description of disordered states and secondary structure propensities, and hints at multi-protein systems as the next challenge for optimization.
    Abriata LA; Dal Peraro M
    Comput Struct Biotechnol J; 2021; 19():2626-2636. PubMed ID: 34025949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated Molecular Dynamics for Peptide Folding: Benchmarking Different Combinations of Force Fields and Explicit Solvent Models.
    Coppa C; Bazzoli A; Barkhordari M; Contini A
    J Chem Inf Model; 2023 May; 63(10):3030-3042. PubMed ID: 37163419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting molecular properties of α-synuclein using force fields for intrinsically disordered proteins.
    Pedersen KB; Flores-Canales JC; Schiøtt B
    Proteins; 2023 Jan; 91(1):47-61. PubMed ID: 35950933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution.
    Tian C; Kasavajhala K; Belfon KAA; Raguette L; Huang H; Migues AN; Bickel J; Wang Y; Pincay J; Wu Q; Simmerling C
    J Chem Theory Comput; 2020 Jan; 16(1):528-552. PubMed ID: 31714766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. General Purpose Water Model Can Improve Atomistic Simulations of Intrinsically Disordered Proteins.
    Shabane PS; Izadi S; Onufriev AV
    J Chem Theory Comput; 2019 Apr; 15(4):2620-2634. PubMed ID: 30865832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimerization of Full-length Aβ -42 Peptide: A Comparison of Different Force Fields and Water Models.
    Paul S; Biswas P
    Chemphyschem; 2024 Jul; ():e202400502. PubMed ID: 38949117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational Preferences of an Intrinsically Disordered Protein Domain: A Case Study for Modern Force Fields.
    Gopal SM; Wingbermühle S; Schnatwinkel J; Juber S; Herrmann C; Schäfer LV
    J Phys Chem B; 2021 Jan; 125(1):24-35. PubMed ID: 33382616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of the adsorption of an intrinsically disordered protein: Force field and water model evaluation in comparison with experiments.
    Koder Hamid M; Månsson LK; Meklesh V; Persson P; Skepö M
    Front Mol Biosci; 2022; 9():958175. PubMed ID: 36387274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate Structure Prediction for Protein Loops Based on Molecular Dynamics Simulations with RSFF2C.
    Feng JJ; Chen JN; Kang W; Wu YD
    J Chem Theory Comput; 2021 Jul; 17(7):4614-4628. PubMed ID: 34170125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CHARMM-GUI supports the Amber force fields.
    Lee J; Hitzenberger M; Rieger M; Kern NR; Zacharias M; Im W
    J Chem Phys; 2020 Jul; 153(3):035103. PubMed ID: 32716185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soluble State of Villin Headpiece Protein as a Tool in the Assessment of MD Force Fields.
    Andrews B; Long K; Urbanc B
    J Phys Chem B; 2021 Jul; 125(25):6897-6911. PubMed ID: 34143637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the ATP-ATP and ATP-disordered protein interactions in high ATP concentration by altering water models.
    Mori T; Yoshida N
    J Chem Phys; 2023 Jul; 159(3):. PubMed ID: 37458354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modified Protein-Water Interactions in CHARMM36m for Thermodynamics and Kinetics of Proteins in Dilute and Crowded Solutions.
    Matsubara D; Kasahara K; Dokainish HM; Oshima H; Sugita Y
    Molecules; 2022 Sep; 27(17):. PubMed ID: 36080494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do molecular dynamics force fields accurately model Ramachandran distributions of amino acid residues in water?
    Andrews B; Guerra J; Schweitzer-Stenner R; Urbanc B
    Phys Chem Chem Phys; 2022 Feb; 24(5):3259-3279. PubMed ID: 35048087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein simulations with an optimized water model: cooperative helix formation and temperature-induced unfolded state collapse.
    Best RB; Mittal J
    J Phys Chem B; 2010 Nov; 114(46):14916-23. PubMed ID: 21038907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting order and disorder for β-peptide foldamers in water.
    Németh LJ; Hegedüs Z; Martinek TA
    J Chem Inf Model; 2014 Oct; 54(10):2776-83. PubMed ID: 25177775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.
    Aliev AE; Courtier-Murias D
    J Phys Chem B; 2010 Sep; 114(38):12358-75. PubMed ID: 20825228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the functional conformations of an atypical proline-rich fusion peptide.
    Dutta N; Dutta Chowdhury S; Lahiri A
    Phys Chem Chem Phys; 2019 Sep; 21(37):20727-20742. PubMed ID: 31509121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-Nucleic Acid Interactions for RNA Polymerase II Elongation Factors by Molecular Dynamics Simulations.
    Gallardo A; Bogart BM; Dutagaci B
    J Chem Inf Model; 2022 Jun; 62(12):3079-3089. PubMed ID: 35686985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CHARMM TIP3P Water Model Suppresses Peptide Folding by Solvating the Unfolded State.
    Boonstra S; Onck PR; Giessen Ev
    J Phys Chem B; 2016 Apr; 120(15):3692-8. PubMed ID: 27031562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.