These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 34026400)
1. Role of Thr82 for the unique photochemistry of TAT rhodopsin. Sugimoto T; Katayama K; Kandori H Biophys Physicobiol; 2021; 18():108-115. PubMed ID: 34026400 [TBL] [Abstract][Full Text] [Related]
2. FTIR study of light-induced proton transfer and Ca Sugimoto T; Katayama K; Kandori H Biophys J; 2024 Dec; 123(24):4245-4255. PubMed ID: 39118325 [TBL] [Abstract][Full Text] [Related]
3. TAT Rhodopsin Is an Ultraviolet-Dependent Environmental pH Sensor. Kataoka C; Sugimoto T; Shigemura S; Katayama K; Tsunoda SP; Inoue K; Béjà O; Kandori H Biochemistry; 2021 Mar; 60(12):899-907. PubMed ID: 33721993 [TBL] [Abstract][Full Text] [Related]
4. Multiple Roles of a Conserved Glutamate Residue for Unique Biophysical Properties in a New Group of Microbial Rhodopsins Homologous to TAT Rhodopsin. Mannen K; Nagata T; Rozenberg A; Konno M; Del Carmen Marín M; Bagherzadeh R; Béjà O; Uchihashi T; Inoue K J Mol Biol; 2024 Mar; 436(5):168331. PubMed ID: 37898385 [TBL] [Abstract][Full Text] [Related]
5. Unique Photochemistry Observed in a New Microbial Rhodopsin. Kataoka C; Inoue K; Katayama K; Béjà O; Kandori H J Phys Chem Lett; 2019 Sep; 10(17):5117-5121. PubMed ID: 31433641 [TBL] [Abstract][Full Text] [Related]
6. Solid-state NMR for the characterization of retinal chromophore and Schiff base in TAT rhodopsin embedded in membranes under weakly acidic conditions. Arikawa S; Sugimoto T; Okitsu T; Wada A; Katayama K; Kandori H; Kawamura I Biophys Physicobiol; 2023 Mar; 20(Supplemental):e201017. PubMed ID: 38362323 [TBL] [Abstract][Full Text] [Related]
7. Movement of the retinylidene Schiff base counterion in rhodopsin by one helix turn reverses the pH dependence of the metarhodopsin I to metarhodopsin II transition. Zvyaga TA; Min KC; Beck M; Sakmar TP J Biol Chem; 1993 Mar; 268(7):4661-7. PubMed ID: 8444840 [TBL] [Abstract][Full Text] [Related]
8. Investigating the mechanism of photoisomerization in jellyfish rhodopsin with the counterion at an atypical position. Inukai S; Katayama K; Koyanagi M; Terakita A; Kandori H J Biol Chem; 2023 Jun; 299(6):104726. PubMed ID: 37094700 [TBL] [Abstract][Full Text] [Related]
9. Calcium Binding to TAT Rhodopsin. Sugimoto T; Katayama K; Kandori H J Phys Chem B; 2022 Mar; 126(11):2203-2207. PubMed ID: 35262367 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the primary photochemistry of proteorhodopsin with femtosecond spectroscopy. Rupenyan A; van Stokkum IH; Arents JC; van Grondelle R; Hellingwerf K; Groot ML Biophys J; 2008 May; 94(10):4020-30. PubMed ID: 18234812 [TBL] [Abstract][Full Text] [Related]
11. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base. Tsutsui K; Imai H; Shichida Y Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760 [TBL] [Abstract][Full Text] [Related]
12. A Unified View on Varied Ultrafast Dynamics of the Primary Process in Microbial Rhodopsins. Chang CF; Kuramochi H; Singh M; Abe-Yoshizumi R; Tsukuda T; Kandori H; Tahara T Angew Chem Int Ed Engl; 2022 Jan; 61(2):e202111930. PubMed ID: 34670002 [TBL] [Abstract][Full Text] [Related]
13. The nature of the primary photochemical events in rhodopsin and isorhodopsin. Birge RR; Einterz CM; Knapp HM; Murray LP Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878 [TBL] [Abstract][Full Text] [Related]
14. Conformational changes in the photocycle of Anabaena sensory rhodopsin: absence of the Schiff base counterion protonation signal. Bergo VB; Ntefidou M; Trivedi VD; Amsden JJ; Kralj JM; Rothschild KJ; Spudich JL J Biol Chem; 2006 Jun; 281(22):15208-14. PubMed ID: 16537532 [TBL] [Abstract][Full Text] [Related]
15. Multiple functions of Schiff base counterion in rhodopsins. Tsutsui K; Shichida Y Photochem Photobiol Sci; 2010 Nov; 9(11):1426-34. PubMed ID: 20842311 [TBL] [Abstract][Full Text] [Related]
16. Structural changes in the Schiff base region of squid rhodopsin upon photoisomerization studied by low-temperature FTIR spectroscopy. Ota T; Furutani Y; Terakita A; Shichida Y; Kandori H Biochemistry; 2006 Mar; 45(9):2845-51. PubMed ID: 16503639 [TBL] [Abstract][Full Text] [Related]
17. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin. Ikeda D; Furutani Y; Kandori H Biochemistry; 2007 May; 46(18):5365-73. PubMed ID: 17428036 [TBL] [Abstract][Full Text] [Related]
18. Spectroscopic study of the transmembrane domain of a rhodopsin-phosphodiesterase fusion protein from a unicellular eukaryote. Watari M; Ikuta T; Yamada D; Shihoya W; Yoshida K; Tsunoda SP; Nureki O; Kandori H J Biol Chem; 2019 Mar; 294(10):3432-3443. PubMed ID: 30622140 [TBL] [Abstract][Full Text] [Related]
19. pH-dependent transitions in xanthorhodopsin. Imasheva ES; Balashov SP; Wang JM; Lanyi JK Photochem Photobiol; 2006; 82(6):1406-13. PubMed ID: 16649816 [TBL] [Abstract][Full Text] [Related]
20. Light-Driven Proton, Sodium Ion, and Chloride Ion Transfer Mechanisms in Rhodopsins: SAC-CI Study. Miyahara T; Nakatsuji H J Phys Chem A; 2019 Mar; 123(9):1766-1784. PubMed ID: 30762358 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]