These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
444 related articles for article (PubMed ID: 34026431)
1. The Future of Neuroscience: Flexible and Wireless Implantable Neural Electronics. McGlynn E; Nabaei V; Ren E; Galeote-Checa G; Das R; Curia G; Heidari H Adv Sci (Weinh); 2021 May; 8(10):2002693. PubMed ID: 34026431 [TBL] [Abstract][Full Text] [Related]
2. Monolithically Defined Wireless Fully Implantable Nervous System Interfaces. Gutruf P Acc Chem Res; 2024 May; 57(9):1275-1286. PubMed ID: 38608256 [TBL] [Abstract][Full Text] [Related]
3. Biointegrated and Wirelessly Powered Implantable Brain Devices: A Review. Das R; Moradi F; Heidari H IEEE Trans Biomed Circuits Syst; 2020 Apr; 14(2):343-358. PubMed ID: 31944987 [TBL] [Abstract][Full Text] [Related]
4. Wireless closed-loop deep brain stimulation using microelectrode array probes. Jia Q; Liu Y; Lv S; Wang Y; Jiao P; Xu W; Xu Z; Wang M; Cai X J Zhejiang Univ Sci B; 2024 Feb; 25(10):803-823. PubMed ID: 39420519 [TBL] [Abstract][Full Text] [Related]
5. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates. Borton DA; Yin M; Aceros J; Nurmikko A J Neural Eng; 2013 Apr; 10(2):026010. PubMed ID: 23428937 [TBL] [Abstract][Full Text] [Related]
6. Wireless gigabit data telemetry for large-scale neural recording. Kuan YC; Lo YK; Kim Y; Chang MC; Liu W IEEE J Biomed Health Inform; 2015 May; 19(3):949-57. PubMed ID: 25823050 [TBL] [Abstract][Full Text] [Related]
13. Lead-free dual-frequency ultrasound implants for wireless, biphasic deep brain stimulation. Wang Q; Zhang Y; Xue H; Zeng Y; Lu G; Fan H; Jiang L; Wu J Nat Commun; 2024 May; 15(1):4017. PubMed ID: 38740759 [TBL] [Abstract][Full Text] [Related]
14. Fabrication and characterization of polyimide-based 'smooth' titanium nitride microelectrode arrays for neural stimulation and recording. Rodrigues F; Ribeiro JF; Anacleto PA; Fouchard A; David O; Sarro PM; Mendes PM J Neural Eng; 2019 Dec; 17(1):016010. PubMed ID: 31614339 [TBL] [Abstract][Full Text] [Related]
15. The Microbead: A 0.009 mm Khalifa A; Liu Y; Karimi Y; Wang Q; Eisape A; Stanacevic M; Thakor N; Bao Z; Etienne-Cummings R IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):971-985. PubMed ID: 31484132 [TBL] [Abstract][Full Text] [Related]
16. An Implantable Wireless Neural Interface System for Simultaneous Recording and Stimulation of Peripheral Nerve with a Single Cuff Electrode. Shon A; Chu JU; Jung J; Kim H; Youn I Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29267230 [TBL] [Abstract][Full Text] [Related]
17. A power and data link for a wireless-implanted neural recording system. Rush AD; Troyk PR IEEE Trans Biomed Eng; 2012 Nov; 59(11):3255-62. PubMed ID: 22922687 [TBL] [Abstract][Full Text] [Related]
18. Adaptive quantization of local field potentials for wireless implants in freely moving animals: an open-source neural recording device. Martinez D; Clément M; Messaoudi B; Gervasoni D; Litaudon P; Buonviso N J Neural Eng; 2018 Apr; 15(2):025001. PubMed ID: 29219118 [TBL] [Abstract][Full Text] [Related]
19. Wireless implantable micro-stimulation device for high frequency bilateral deep brain stimulation in freely moving mice. de Haas R; Struikmans R; van der Plasse G; van Kerkhof L; Brakkee JH; Kas MJ; Westenberg HG J Neurosci Methods; 2012 Jul; 209(1):113-9. PubMed ID: 22677175 [TBL] [Abstract][Full Text] [Related]
20. A low-cost multichannel wireless neural stimulation system for freely roaming animals. Alam M; Chen X; Fernandez E J Neural Eng; 2013 Dec; 10(6):066010. PubMed ID: 24162159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]