BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 34026476)

  • 1. Viral inhibitors derived from macroalgae, microalgae, and cyanobacteria: A review of antiviral potential throughout pathogenesis.
    Reynolds D; Huesemann M; Edmundson S; Sims A; Hurst B; Cady S; Beirne N; Freeman J; Berger A; Gao S
    Algal Res; 2021 Jul; 57():102331. PubMed ID: 34026476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses.
    Artese A; Svicher V; Costa G; Salpini R; Di Maio VC; Alkhatib M; Ambrosio FA; Santoro MM; Assaraf YG; Alcaro S; Ceccherini-Silberstein F
    Drug Resist Updat; 2020 Dec; 53():100721. PubMed ID: 33132205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant-Derived Epi-Nutraceuticals as Potential Broad-Spectrum Anti-Viral Agents.
    Gabbianelli R; Shahar E; de Simone G; Rucci C; Bordoni L; Feliziani G; Zhao F; Ferrati M; Maggi F; Spinozzi E; Mahajna J
    Nutrients; 2023 Nov; 15(22):. PubMed ID: 38004113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanobacteria and Algae-Derived Bioactive Metabolites as Antiviral Agents: Evidence, Mode of Action, and Scope for Further Expansion; A Comprehensive Review in Light of the SARS-CoV-2 Outbreak.
    Pradhan B; Nayak R; Patra S; Bhuyan PP; Dash SR; Ki JS; Adhikary SP; Ragusa A; Jena M
    Antioxidants (Basel); 2022 Feb; 11(2):. PubMed ID: 35204236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular scaffolds from mother nature as possible lead compounds in drug design and discovery against coronaviruses: A landscape analysis of published literature and molecular docking studies.
    Khursheed A; Jain V; Rasool A; Rather MA; Malik NA; Shalla AH
    Microb Pathog; 2021 Aug; 157():104933. PubMed ID: 33984466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Basis for the Understanding of Entry Inhibitors against SARS Viruses.
    Kushwaha PK; Kumari N; Nayak S; Kishor K; Sharon A
    Curr Med Chem; 2022; 29(4):666-681. PubMed ID: 33992054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Potential of Algal Biotechnology to Produce Antiviral Compounds and Biopharmaceuticals.
    Rosales-Mendoza S; García-Silva I; González-Ortega O; Sandoval-Vargas JM; Malla A; Vimolmangkang S
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32899754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic potential of green tea catechin, (-)-epigallocatechin-3-
    Dinda B; Dinda S; Dinda M
    Phytomed Plus; 2023 Feb; 3(1):100402. PubMed ID: 36597465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Japan-China Joint Medical Workshop on Drug Discoveries and Therapeutics 2008: The need of Asian pharmaceutical researchers' cooperation.
    Nakata M; Tang W
    Drug Discov Ther; 2008 Oct; 2(5):262-3. PubMed ID: 22504718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergence and Re-emergence of Human Coronaviruses: Spike Protein as the Potential Molecular Switch and Pharmaceutical Target.
    Ahmad F; Kamal MA; Tekwani BL
    Curr Pharm Des; 2021; 27(33):3566-3576. PubMed ID: 33327904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-omics insights into host-viral response and pathogenesis in Crimean-Congo hemorrhagic fever viruses for novel therapeutic target.
    Neogi U; Elaldi N; Appelberg S; Ambikan A; Kennedy E; Dowall S; Bagci BK; Gupta S; Rodriguez JE; Svensson-Akusjärvi S; Monteil V; Vegvari A; Benfeitas R; Banerjea A; Weber F; Hewson R; Mirazimi A
    Elife; 2022 Apr; 11():. PubMed ID: 35437144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting the Fusion Process of SARS-CoV-2 Infection by Small Molecule Inhibitors.
    Park SB; Irvin P; Hu Z; Khan M; Hu X; Zeng Q; Chen C; Xu M; Leek M; Zang R; Case JB; Zheng W; Ding S; Liang TJ
    mBio; 2022 Feb; 13(1):e0323821. PubMed ID: 35012356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of epigenetics in affecting host immunity during SARS-CoV-2 infection.
    Behura A; Naik L; Patel S; Das M; Kumar A; Mishra A; Nayak DK; Manna D; Mishra A; Dhiman R
    Biochim Biophys Acta Mol Basis Dis; 2023 Mar; 1869(3):166634. PubMed ID: 36577469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial peptides: A promising tool to combat multidrug resistance in SARS CoV2 era.
    Saini J; Kaur P; Malik N; Lakhawat SS; Sharma PK
    Microbiol Res; 2022 Dec; 265():127206. PubMed ID: 36162150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antiviral plant-derived natural products to combat RNA viruses: Targets throughout the viral life cycle.
    Owen L; Laird K; Shivkumar M
    Lett Appl Microbiol; 2022 Sep; 75(3):476-499. PubMed ID: 34953146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Marine Algal Antioxidants as Potential Vectors for Controlling Viral Diseases.
    Sansone C; Brunet C; Noonan DM; Albini A
    Antioxidants (Basel); 2020 May; 9(5):. PubMed ID: 32392759
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 19.