BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 34026622)

  • 1. Targeting DNA Damage Repair for Immune Checkpoint Inhibition: Mechanisms and Potential Clinical Applications.
    Sun W; Zhang Q; Wang R; Li Y; Sun Y; Yang L
    Front Oncol; 2021; 11():648687. PubMed ID: 34026622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moving From Poly (ADP-Ribose) Polymerase Inhibition to Targeting DNA Repair and DNA Damage Response in Cancer Therapy.
    Gourley C; Balmaña J; Ledermann JA; Serra V; Dent R; Loibl S; Pujade-Lauraine E; Boulton SJ
    J Clin Oncol; 2019 Sep; 37(25):2257-2269. PubMed ID: 31050911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting ATR in cancer medicine.
    Sundar R; Brown J; Ingles Russo A; Yap TA
    Curr Probl Cancer; 2017; 41(4):302-315. PubMed ID: 28662958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting DNA Damage Response in Prostate and Breast Cancer.
    Wengner AM; Scholz A; Haendler B
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33158305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Curcumin suppresses multiple DNA damage response pathways and has potency as a sensitizer to PARP inhibitor.
    Ogiwara H; Ui A; Shiotani B; Zou L; Yasui A; Kohno T
    Carcinogenesis; 2013 Nov; 34(11):2486-97. PubMed ID: 23825154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting the DNA Damage Response and DNA Repair Pathways to Enhance Radiosensitivity in Colorectal Cancer.
    Deng S; Vlatkovic T; Li M; Zhan T; Veldwijk MR; Herskind C
    Cancers (Basel); 2022 Oct; 14(19):. PubMed ID: 36230796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic vulnerabilities upon inhibition of DNA damage response.
    Wang C; Tang M; Chen Z; Nie L; Li S; Xiong Y; Szymonowicz KA; Park JM; Zhang H; Feng X; Huang M; Su D; Hart T; Chen J
    Nucleic Acids Res; 2021 Aug; 49(14):8214-8231. PubMed ID: 34320214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination Platinum-based and DNA Damage Response-targeting Cancer Therapy: Evolution and Future Directions.
    Basourakos SP; Li L; Aparicio AM; Corn PG; Kim J; Thompson TC
    Curr Med Chem; 2017; 24(15):1586-1606. PubMed ID: 27978798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immune Checkpoint Inhibitors in Tumors Harboring Homologous Recombination Deficiency: Challenges in Attaining Efficacy.
    Silva SB; Wanderley CWS; Colli LM
    Front Immunol; 2022; 13():826577. PubMed ID: 35211121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATR Inhibition Potentiates PARP Inhibitor Cytotoxicity in High Risk Neuroblastoma Cell Lines by Multiple Mechanisms.
    Southgate HED; Chen L; Tweddle DA; Curtin NJ
    Cancers (Basel); 2020 Apr; 12(5):. PubMed ID: 32354033
    [No Abstract]   [Full Text] [Related]  

  • 11. The Novel ATR Inhibitor BAY 1895344 Is Efficacious as Monotherapy and Combined with DNA Damage-Inducing or Repair-Compromising Therapies in Preclinical Cancer Models.
    Wengner AM; Siemeister G; Lücking U; Lefranc J; Wortmann L; Lienau P; Bader B; Bömer U; Moosmayer D; Eberspächer U; Golfier S; Schatz CA; Baumgart SJ; Haendler B; Lejeune P; Schlicker A; von Nussbaum F; Brands M; Ziegelbauer K; Mumberg D
    Mol Cancer Ther; 2020 Jan; 19(1):26-38. PubMed ID: 31582533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of DNA damage repair (DDR) system in response to immune checkpoint inhibitor (ICI) therapy.
    Shi C; Qin K; Lin A; Jiang A; Cheng Q; Liu Z; Zhang J; Luo P
    J Exp Clin Cancer Res; 2022 Sep; 41(1):268. PubMed ID: 36071479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-Tumor Effect of Inhibition of DNA Damage Response Proteins, ATM and ATR, in Endometrial Cancer Cells.
    Takeuchi M; Tanikawa M; Nagasaka K; Oda K; Kawata Y; Oki S; Agapiti C; Sone K; Miyagawa Y; Hiraike H; Wada-Hiraike O; Kuramoto H; Ayabe T; Osuga Y; Fujii T
    Cancers (Basel); 2019 Dec; 11(12):. PubMed ID: 31805725
    [No Abstract]   [Full Text] [Related]  

  • 14. Triple kill: DDR inhibitors, radiotherapy and immunotherapy leave cancer cells with no escape.
    Qiu Y; Hu X; Zeng X; Wang H
    Acta Biochim Biophys Sin (Shanghai); 2022 Oct; 54(11):1569-1576. PubMed ID: 36305726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting the ATR-CHK1 Axis in Cancer Therapy.
    Rundle S; Bradbury A; Drew Y; Curtin NJ
    Cancers (Basel); 2017 Apr; 9(5):. PubMed ID: 28448462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictive and Prognostic Value of DNA Damage Response Associated Kinases in Solid Tumors.
    Gachechiladze M; Skarda J; Bouchalova K; Soltermann A; Joerger M
    Front Oncol; 2020; 10():581217. PubMed ID: 33224881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting the DNA Damage Response Machinery for Lung Cancer Treatment.
    Venugopala KN
    Pharmaceuticals (Basel); 2022 Nov; 15(12):. PubMed ID: 36558926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potential of PARP inhibitors in targeted cancer therapy and immunotherapy.
    Hunia J; Gawalski K; Szredzka A; Suskiewicz MJ; Nowis D
    Front Mol Biosci; 2022; 9():1073797. PubMed ID: 36533080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic Effect of a Mesothelin-Targeted
    Wickstroem K; Hagemann UB; Cruciani V; Wengner AM; Kristian A; Ellingsen C; Siemeister G; Bjerke RM; Karlsson J; Ryan OB; Linden L; Mumberg D; Ziegelbauer K; Cuthbertson AS
    J Nucl Med; 2019 Sep; 60(9):1293-1300. PubMed ID: 30850485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting DNA damage response and repair genes to enhance anticancer immunotherapy: rationale and clinical implication.
    Lamberti G; Andrini E; Sisi M; Federico AD; Ricciuti B
    Future Oncol; 2020 Aug; 16(23):1751-1766. PubMed ID: 32539551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.