These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 34026938)
1. Feasibility Analysis of a Novel Method for the Estimation of Local Bone Mechanical Properties: A Preliminary Investigation of Different Pressure Rod Designs on Synthetic Cancellous Bone Models. Maslaris A; Bungartz M; Layher F; Zippelius T; Matziolis G; Brinkmann O Arch Bone Jt Surg; 2021 Mar; 9(2):203-210. PubMed ID: 34026938 [TBL] [Abstract][Full Text] [Related]
2. A novel method for intraoperative osseomechanical strength measurements: a biomechanical ex vivo evaluation on proximal femora. Maslaris A; Brinkmann O; Layher F; Matziolis G; Bungartz M Arch Orthop Trauma Surg; 2020 Jun; 140(6):727-734. PubMed ID: 31696321 [TBL] [Abstract][Full Text] [Related]
3. Predictive value of Singh index and bone mineral density measured by quantitative computed tomography in determining the local cancellous bone quality of the proximal femur. Wachter NJ; Augat P; Hoellen IP; Krischak GD; Sarkar MR; Mentzel M; Kinzl L; Claes L Clin Biomech (Bristol, Avon); 2001 Mar; 16(3):257-62. PubMed ID: 11240062 [TBL] [Abstract][Full Text] [Related]
4. An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density. Hasegawa K; Abe M; Washio T; Hara T Spine (Phila Pa 1976); 2001 Apr; 26(8):957-63. PubMed ID: 11317121 [TBL] [Abstract][Full Text] [Related]
5. Predictive value of proximal femoral bone densitometry in determining local orthogonal material properties. Cody DD; McCubbrey DA; Divine GW; Gross GJ; Goldstein SA J Biomech; 1996 Jun; 29(6):753-61. PubMed ID: 9147972 [TBL] [Abstract][Full Text] [Related]
6. Bone volume fraction and structural parameters for estimation of mechanical stiffness and failure load of human cancellous bone samples; in-vitro comparison of ultrasound transit time spectroscopy and X-ray μCT. Alomari AH; Wille ML; Langton CM Bone; 2018 Feb; 107():145-153. PubMed ID: 29198979 [TBL] [Abstract][Full Text] [Related]
7. Utilization of DXA Bone Mineral Densitometry in Ontario: An Evidence-Based Analysis. Medical Advisory Secretariat Ont Health Technol Assess Ser; 2006; 6(20):1-180. PubMed ID: 23074491 [TBL] [Abstract][Full Text] [Related]
8. Assessment of vertebral wedge strength using cancellous textural properties derived from digital tomosynthesis and density properties from dual energy X-ray absorptiometry and high resolution computed tomography. Yeni YN; Kim W; Oravec D; Nixon M; Divine GW; Flynn MJ J Biomech; 2018 Oct; 79():191-197. PubMed ID: 30173933 [TBL] [Abstract][Full Text] [Related]
9. Cancellous Screws Are Biomechanically Superior to Cortical Screws in Metaphyseal Bone. Wang T; Boone C; Behn AW; Ledesma JB; Bishop JA Orthopedics; 2016 Sep; 39(5):e828-32. PubMed ID: 27172369 [TBL] [Abstract][Full Text] [Related]
10. Material properties of human vertebral trabecular bone under compression can be predicted based on quantitative computed tomography. Gehweiler D; Schultz M; Schulze M; Riesenbeck O; Wähnert D; Raschke MJ BMC Musculoskelet Disord; 2021 Aug; 22(1):709. PubMed ID: 34407777 [TBL] [Abstract][Full Text] [Related]
11. Predictive value of bone mineral density and Singh index for the in vitro mechanical properties of cancellous bone in the femoral head. Krischak GD; Augat P; Wachter NJ; Kinzl L; Claes LE Clin Biomech (Bristol, Avon); 1999 Jun; 14(5):346-51. PubMed ID: 10521612 [TBL] [Abstract][Full Text] [Related]
12. Preoperative estimation of screw fixation strength in vertebral bodies. Eysel P; Schwitalle M; Oberstein A; Rompe JD; Hopf C; Küllmer K Spine (Phila Pa 1976); 1998 Jan; 23(2):174-80. PubMed ID: 9474722 [TBL] [Abstract][Full Text] [Related]
13. Quantification of bone strength by intraoperative torque measurement: a technical note. Suhm N; Haenni M; Schwyn R; Hirschmann M; Müller AM Arch Orthop Trauma Surg; 2008 Jun; 128(6):613-20. PubMed ID: 18297298 [TBL] [Abstract][Full Text] [Related]
14. A method for patient-specific evaluation of vertebral cancellous bone strength: in vitro validation. Diamant I; Shahar R; Masharawi Y; Gefen A Clin Biomech (Bristol, Avon); 2007 Mar; 22(3):282-91. PubMed ID: 17134802 [TBL] [Abstract][Full Text] [Related]
15. Mechanical torque measurement predicts load to implant cut-out: a biomechanical study investigating DHS anchorage in femoral heads. Suhm N; Hengg C; Schwyn R; Windolf M; Quarz V; Hänni M Arch Orthop Trauma Surg; 2007 Aug; 127(6):469-74. PubMed ID: 17165032 [TBL] [Abstract][Full Text] [Related]
16. Mechanical and microarchitectural analyses of cancellous bone through experiment and computer simulation. Syahrom A; Abdul Kadir MR; Abdullah J; Öchsner A Med Biol Eng Comput; 2011 Dec; 49(12):1393-403. PubMed ID: 21947767 [TBL] [Abstract][Full Text] [Related]
17. [Dual-energy X-ray absorptiometry: value in orthopedics]. Maugars Y; Berthelot JM; Delécrin J; Trécant M; Passuti N; Daculsi G; Prost A Rev Chir Orthop Reparatrice Appar Mot; 1995; 81(4):326-32. PubMed ID: 8560002 [TBL] [Abstract][Full Text] [Related]
18. Shortcomings of DXA to assess changes in bone tissue density and microstructure induced by metabolic bone diseases in rat models. Nazarian A; Cory E; Müller R; Snyder BD Osteoporos Int; 2009 Jan; 20(1):123-32. PubMed ID: 18516487 [TBL] [Abstract][Full Text] [Related]
19. Accuracy of pQCT for evaluating the aged human radius: an ashing, histomorphometry and failure load investigation. Ashe MC; Khan KM; Kontulainen SA; Guy P; Liu D; Beck TJ; McKay HA Osteoporos Int; 2006; 17(8):1241-51. PubMed ID: 16683179 [TBL] [Abstract][Full Text] [Related]
20. Separate effects of osteoporosis and density on the strength and stiffness of human cancellous bone. Hodgskinson R; Currey JD Clin Biomech (Bristol, Avon); 1993 Sep; 8(5):262-8. PubMed ID: 23915987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]