These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34026968)

  • 1. Raman spectroscopy, mobility size and radiative emissions data for soot formed at increasing temperature and equivalence ratio in flames hotter than conventional combustion applications.
    Dasappa S; Camacho J
    Data Brief; 2021 Jun; 36():107064. PubMed ID: 34026968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Digital camera measurements of soot temperature and soot volume fraction in axisymmetric flames.
    Guo H; Castillo JA; Sunderland PB
    Appl Opt; 2013 Nov; 52(33):8040-7. PubMed ID: 24513755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Candle flame soot sizing by planar time-resolved laser-induced incandescence.
    Verdugo I; Cruz JJ; Álvarez E; Reszka P; Figueira da Silva LF; Fuentes A
    Sci Rep; 2020 Jul; 10(1):11364. PubMed ID: 32647154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of soot self-absorption on color-ratio pyrometry in laminar coflow diffusion flames.
    Kempema NJ; Long MB
    Opt Lett; 2018 Mar; 43(5):1103-1106. PubMed ID: 29489790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of sooting flames by color-ratio pyrometry with a consumer-grade DSLR camera.
    Sankaranarayanan A; Swami U; Sasidharakurup R; Chowdhury A; Kumbhakarna N
    Rev Sci Instrum; 2021 Apr; 92(4):044905. PubMed ID: 34243423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Online determination of polycyclic aromatic hydrocarbon formation from a flame soot generator.
    Mueller L; Jakobi G; Orasche J; Karg E; Sklorz M; Abbaszade G; Weggler B; Jing L; Schnelle-Kreis J; Zimmermann R
    Anal Bioanal Chem; 2015 Aug; 407(20):5911-22. PubMed ID: 25711989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective reduction on flame soot via plasma coupled with carbon dioxide.
    Qi D; Chen M; Yang K; Li T; Ying Y; Liu D
    J Hazard Mater; 2024 Mar; 466():133669. PubMed ID: 38310061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-FTIR study of soot chemical composition-evidence of aliphatic hydrocarbons on nascent soot surfaces.
    Cain JP; Gassman PL; Wang H; Laskin A
    Phys Chem Chem Phys; 2010; 12(20):5206-18. PubMed ID: 21491682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UV-visible spectroscopy of organic carbon particulate sampled from ethylene/air flames.
    Sgro LA; Minutolo P; Basile G; D'Alessio A
    Chemosphere; 2001; 42(5-7):671-80. PubMed ID: 11219693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combustion conditions influence toxicity of flame-generated soot to ocular (ARPE-19) cells.
    Mitroo D; Das DN; Hamilton PD; Kumfer BM; Ravi N
    Environ Pollut; 2024 Mar; 344():123307. PubMed ID: 38190877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particulates generated from combustion of polymers (plastics).
    Shemwell BE; Levendis YA
    J Air Waste Manag Assoc; 2000 Jan; 50(1):94-102. PubMed ID: 10680369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurements of nanoparticles of organic carbon and soot in flames and vehicle exhausts.
    Sgro LA; Borghese A; Speranza L; Barone AC; Minutolo P; Bruno A; D'Anna A; D'Alessio A
    Environ Sci Technol; 2008 Feb; 42(3):859-63. PubMed ID: 18323113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polynuclear aromatic hydrocarbon and particulate emissions from two-stage combustion of polystyrene: the effects of the secondary furnace (afterburner) temperature and soot filtration.
    Wang J; Richter H; Howard JB; Levendis YA; Carlson J
    Environ Sci Technol; 2002 Feb; 36(4):797-808. PubMed ID: 11878400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High sensitivity of diesel soot morphological and optical properties to combustion temperature in a shock tube.
    Qiu C; Khalizov AF; Hogan B; Petersen EL; Zhang R
    Environ Sci Technol; 2014 Jun; 48(11):6444-52. PubMed ID: 24803287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of renewable diesel particulate matter gathered from non-premixed and partially premixed flame burners and from a diesel engine.
    Cadrazco M; Santamaría A; Jaramillo IC; Kaur K; Kelly KE; Agudelo JR
    Combust Flame; 2020 Apr; 214():65-79. PubMed ID: 32189720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-color pyrometry system to eliminate optical errors for spatially resolved measurements in flames.
    Reggeti SA; Agrawal AK; Bittle JA
    Appl Opt; 2019 Nov; 58(32):8905-8913. PubMed ID: 31873674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A small porous-plug burner for studies of combustion chemistry and soot formation.
    Campbell MF; Schrader PE; Catalano AL; Johansson KO; Bohlin GA; Richards-Henderson NK; Kliewer CJ; Michelsen HA
    Rev Sci Instrum; 2017 Dec; 88(12):125106. PubMed ID: 29289223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames.
    Vargas AM; Gülder ÖL
    Rev Sci Instrum; 2016 May; 87(5):055101. PubMed ID: 27250464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-wavelength broadband soot pyrometry technique for axisymmetric flames.
    Cruz JJ; Escudero F; Álvarez E; Figueira da Silva LF; Carvajal G; Thomsen M; Fuentes A
    Opt Lett; 2021 Jun; 46(11):2654-2657. PubMed ID: 34061080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional two-wavelength emission technique for soot diagnostics.
    Cignoli F; De Iuliis S; Manta V; Zizak G
    Appl Opt; 2001 Oct; 40(30):5370-8. PubMed ID: 18364816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.