These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 34027093)

  • 1. A review of biomimetic scaffolds for bone regeneration: Toward a cell-free strategy.
    Jiang S; Wang M; He J
    Bioeng Transl Med; 2021 May; 6(2):e10206. PubMed ID: 34027093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchically designed bone scaffolds: From internal cues to external stimuli.
    Du Y; Guo JL; Wang J; Mikos AG; Zhang S
    Biomaterials; 2019 Oct; 218():119334. PubMed ID: 31306826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-free and cell-based approaches for bone regeneration.
    Bueno EM; Glowacki J
    Nat Rev Rheumatol; 2009 Dec; 5(12):685-97. PubMed ID: 19901916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymeric nanofibrous scaffolds laden with cell-derived extracellular matrix for bone regeneration.
    Junka R; Yu X
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():110981. PubMed ID: 32487395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances.
    Zhou B; Jiang X; Zhou X; Tan W; Luo H; Lei S; Yang Y
    Biomater Res; 2023 Sep; 27(1):86. PubMed ID: 37715230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo.
    Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L
    Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BMSC exosome-enriched acellular fish scale scaffolds promote bone regeneration.
    Wang Y; Kong B; Chen X; Liu R; Zhao Y; Gu Z; Jiang Q
    J Nanobiotechnology; 2022 Oct; 20(1):444. PubMed ID: 36224596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-surface coated titanium scaffolds with cancellous bone-like biomimetic structure for enhanced bone tissue regeneration.
    Zhang B; Li J; He L; Huang H; Weng J
    Acta Biomater; 2020 Sep; 114():431-448. PubMed ID: 32682055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic porous scaffolds containing decellularized small intestinal submucosa and Sr
    Cui W; Yang L; Ullah I; Yu K; Zhao Z; Gao X; Liu T; Liu M; Li P; Wang J; Guo X
    Biomed Mater; 2022 Feb; 17(2):. PubMed ID: 35026740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element method (FEM), mechanobiology and biomimetic scaffolds in bone tissue engineering.
    Boccaccio A; Ballini A; Pappalettere C; Tullo D; Cantore S; Desiate A
    Int J Biol Sci; 2011 Jan; 7(1):112-32. PubMed ID: 21278921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Porous Scaffolds Derived from Bovine Cancellous Bone Matrix Promote Osteoinduction, Osteoconduction, and Osteogenesis.
    Malagón-Escandón A; Hautefeuille M; Jimenez-Díaz E; Arenas-Alatorre J; Saniger JM; Badillo-Ramírez I; Vazquez N; Piñón-Zarate G; Castell-Rodríguez A
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review of Biomimetic and Biodegradable Magnetic Scaffolds for Bone Tissue Engineering and Oncology.
    Paltanea G; Manescu Paltanea V; Antoniac I; Antoniac A; Nemoianu IV; Robu A; Dura H
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periosteum and development of the tissue-engineered periosteum for guided bone regeneration.
    Zhang W; Wang N; Yang M; Sun T; Zhang J; Zhao Y; Huo N; Li Z
    J Orthop Translat; 2022 Mar; 33():41-54. PubMed ID: 35228996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current strategies in biomaterial-based periosteum scaffolds to promote bone regeneration: A review.
    Wang J; Chen G; Chen ZM; Wang FP; Xia B
    J Biomater Appl; 2023 Feb; 37(7):1259-1270. PubMed ID: 36251764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review.
    Chahal S; Kumar A; Hussian FSJ
    J Biomater Sci Polym Ed; 2019 Oct; 30(14):1308-1355. PubMed ID: 31181982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of decellularized cartilage matrix scaffolds combined with endometrial stem cell-derived osteocytes on osteochondral tissue engineering in rats.
    Bahrami N; Bordbar S; Hasanzadeh E; Goodarzi A; Ai A; Mohamadnia A
    In Vitro Cell Dev Biol Anim; 2022 Jun; 58(6):480-490. PubMed ID: 35727496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic Scaffolds for Bone Tissue Engineering.
    Park JY; Park SH; Kim MG; Park SH; Yoo TH; Kim MS
    Adv Exp Med Biol; 2018; 1064():109-121. PubMed ID: 30471029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Review of the Application of Natural and Synthetic Scaffolds in Bone Regeneration.
    Wong SK; Yee MMF; Chin KY; Ima-Nirwana S
    J Funct Biomater; 2023 May; 14(5):. PubMed ID: 37233395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteogenic protein-1 for long bone nonunion: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2005; 5(6):1-57. PubMed ID: 23074475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.