These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
368 related articles for article (PubMed ID: 34027149)
1. Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry. Tamayo JA; Riascos M; Vargas CA; Baena LM Heliyon; 2021 May; 7(5):e06892. PubMed ID: 34027149 [TBL] [Abstract][Full Text] [Related]
2. Complex geometry and integrated macro-porosity: Clinical applications of electron beam melting to fabricate bespoke bone-anchored implants. Palmquist A; Jolic M; Hryha E; Shah FA Acta Biomater; 2023 Jan; 156():125-145. PubMed ID: 35675890 [TBL] [Abstract][Full Text] [Related]
3. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs. Sing SL; An J; Yeong WY; Wiria FE J Orthop Res; 2016 Mar; 34(3):369-85. PubMed ID: 26488900 [TBL] [Abstract][Full Text] [Related]
4. A novel titanium alloy for load-bearing biomedical implants: Evaluating the antibacterial and biocompatibility of Ti536 produced via electron beam powder bed fusion additive manufacturing process. Behjat A; Sanaei S; Mosallanejad MH; Atapour M; Sheikholeslam M; Saboori A; Iuliano L Biomater Adv; 2024 Oct; 163():213928. PubMed ID: 38941776 [TBL] [Abstract][Full Text] [Related]
5. Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications. Trevisan F; Calignano F; Aversa A; Marchese G; Lombardi M; Biamino S; Ugues D; Manfredi D J Appl Biomater Funct Mater; 2018 Apr; 16(2):57-67. PubMed ID: 28967051 [TBL] [Abstract][Full Text] [Related]
6. Powder based additive manufacturing for biomedical application of titanium and its alloys: a review. Jang TS; Kim D; Han G; Yoon CB; Jung HD Biomed Eng Lett; 2020 Nov; 10(4):505-516. PubMed ID: 33194244 [TBL] [Abstract][Full Text] [Related]
7. In vitro dermal and epidermal cellular response to titanium alloy implants fabricated with electron beam melting. Springer JC; Harrysson OL; Marcellin-Little DJ; Bernacki SH Med Eng Phys; 2014 Oct; 36(10):1367-72. PubMed ID: 25080895 [TBL] [Abstract][Full Text] [Related]
8. A Comparison of Biocompatibility of a Titanium Alloy Fabricated by Electron Beam Melting and Selective Laser Melting. Wang H; Zhao B; Liu C; Wang C; Tan X; Hu M PLoS One; 2016; 11(7):e0158513. PubMed ID: 27391895 [TBL] [Abstract][Full Text] [Related]
9. Selective Laser Melting and Electron Beam Melting of Ti6Al4V for Orthopedic Applications: A Comparative Study on the Applied Building Direction. Ginestra P; Ferraro RM; Zohar-Hauber K; Abeni A; Giliani S; Ceretti E Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33297551 [TBL] [Abstract][Full Text] [Related]
10. Additive manufacturing of titanium-based alloys- A review of methods, properties, challenges, and prospects. Tshephe TS; Akinwamide SO; Olevsky E; Olubambi PA Heliyon; 2022 Mar; 8(3):e09041. PubMed ID: 35299605 [TBL] [Abstract][Full Text] [Related]
11. A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Sarraf M; Rezvani Ghomi E; Alipour S; Ramakrishna S; Liana Sukiman N Biodes Manuf; 2022; 5(2):371-395. PubMed ID: 34721937 [TBL] [Abstract][Full Text] [Related]
13. Progress in Additive Manufacturing of Magnesium Alloys: A Review. Chen J; Chen B Materials (Basel); 2024 Aug; 17(15):. PubMed ID: 39124514 [TBL] [Abstract][Full Text] [Related]
14. Topological, Mechanical and Biological Properties of Ti6Al4V Scaffolds for Bone Tissue Regeneration Fabricated with Reused Powders via Electron Beam Melting. Gatto ML; Groppo R; Bloise N; Fassina L; Visai L; Galati M; Iuliano L; Mengucci P Materials (Basel); 2021 Jan; 14(1):. PubMed ID: 33466387 [TBL] [Abstract][Full Text] [Related]
15. Microstructure and mechanical properties of porous titanium structures fabricated by electron beam melting for cranial implants. Moiduddin K Proc Inst Mech Eng H; 2018 Feb; 232(2):185-199. PubMed ID: 29332500 [TBL] [Abstract][Full Text] [Related]
16. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). Parthasarathy J; Starly B; Raman S; Christensen A J Mech Behav Biomed Mater; 2010 Apr; 3(3):249-59. PubMed ID: 20142109 [TBL] [Abstract][Full Text] [Related]
17. A Review of the Applications of Additive Manufacturing Technologies Used to Fabricate Metals in Implant Dentistry. Revilla-León M; Sadeghpour M; Özcan M J Prosthodont; 2020 Aug; 29(7):579-593. PubMed ID: 32548890 [TBL] [Abstract][Full Text] [Related]
18. Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting. Shah FA; Omar O; Suska F; Snis A; Matic A; Emanuelsson L; Norlindh B; Lausmaa J; Thomsen P; Palmquist A Acta Biomater; 2016 May; 36():296-309. PubMed ID: 27000553 [TBL] [Abstract][Full Text] [Related]
19. Additive manufacturing of biodegradable metals: Current research status and future perspectives. Qin Y; Wen P; Guo H; Xia D; Zheng Y; Jauer L; Poprawe R; Voshage M; Schleifenbaum JH Acta Biomater; 2019 Oct; 98():3-22. PubMed ID: 31029830 [TBL] [Abstract][Full Text] [Related]
20. Effect of Various Peening Methods on the Fatigue Properties of Titanium Alloy Ti6Al4V Manufactured by Direct Metal Laser Sintering and Electron Beam Melting. Soyama H; Takeo F Materials (Basel); 2020 May; 13(10):. PubMed ID: 32408590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]