BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 34027297)

  • 1. Root vacuolar sequestration and suberization are prominent responses of
    Zhang S; Quartararo A; Betz OK; Madahhosseini S; Heringer AS; Le T; Shao Y; Caruso T; Ferguson L; Jernstedt J; Wilkop T; Drakakaki G
    Plant Direct; 2021 May; 5(5):e00315. PubMed ID: 34027297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of Salt Tolerance Mechanisms Across a Root Developmental Gradient in Almond Rootstocks.
    Shao Y; Cheng Y; Pang H; Chang M; He F; Wang M; Davis DJ; Zhang S; Betz O; Fleck C; Dai T; Madahhosseini S; Wilkop T; Jernstedt J; Drakakaki G
    Front Plant Sci; 2020; 11():595055. PubMed ID: 33469461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium interception by xylem parenchyma and chloride recirculation in phloem may augment exclusion in the salt tolerant Pistacia genus: context for salinity studies on tree crops.
    Godfrey JM; Ferguson L; Sanden BL; Tixier A; Sperling O; Grattan SR; Zwieniecki MA
    Tree Physiol; 2019 Aug; 39(8):1484-1498. PubMed ID: 31095335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion homeostasis, osmoregulation, and physiological changes in the roots and leaves of pistachio rootstocks in response to salinity.
    Akbari M; Mahna N; Ramesh K; Bandehagh A; Mazzuca S
    Protoplasma; 2018 Sep; 255(5):1349-1362. PubMed ID: 29527645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Root vacuolar Na
    Wu H; Shabala L; Zhou M; Su N; Wu Q; Ul-Haq T; Zhu J; Mancuso S; Azzarello E; Shabala S
    Plant J; 2019 Oct; 100(1):55-67. PubMed ID: 31148333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salt tolerance and exclusion in the mangrove plant Avicennia marina in relation to root apoplastic barriers.
    Cheng H; Inyang A; Li CD; Fei J; Zhou YW; Wang YS
    Ecotoxicology; 2020 Aug; 29(6):676-683. PubMed ID: 32291617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking salinity stress tolerance with tissue-specific Na(+) sequestration in wheat roots.
    Wu H; Shabala L; Liu X; Azzarello E; Zhou M; Pandolfi C; Chen ZH; Bose J; Mancuso S; Shabala S
    Front Plant Sci; 2015; 6():71. PubMed ID: 25750644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K
    Liu J; Li G; Chen L; Gu J; Wu H; Li Z
    J Nanobiotechnology; 2021 May; 19(1):153. PubMed ID: 34034767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rootstock Effects on Pistachio Trees Grown in Verticillium dahliae-Infested Soil.
    Epstein L; Beede R; Kaur S; Ferguson L
    Phytopathology; 2004 Apr; 94(4):388-95. PubMed ID: 18944115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ABA-serotonin module regulates root suberization and salinity tolerance.
    Lu HP; Gao Q; Han JP; Guo XH; Wang Q; Altosaar I; Barberon M; Liu JX; Gatehouse AMR; Shu QY
    New Phytol; 2022 Nov; 236(3):958-973. PubMed ID: 35872572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of changes in physiological and biochemical traits in four pistachio rootstocks under drought, salinity and drought + salinity stresses.
    Jamshidi Goharrizi K; Amirmahani F; Salehi F
    Physiol Plant; 2020 Apr; 168(4):973-989. PubMed ID: 31670837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.).
    Krishnamurthy P; Ranathunge K; Nayak S; Schreiber L; Mathew MK
    J Exp Bot; 2011 Aug; 62(12):4215-28. PubMed ID: 21558150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.).
    Krishnamurthy P; Ranathunge K; Franke R; Prakash HS; Schreiber L; Mathew MK
    Planta; 2009 Jun; 230(1):119-34. PubMed ID: 19363620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Casparian bands and suberin lamellae in exodermis of lateral roots: an important trait of roots system response to abiotic stress factors.
    Tylová E; Pecková E; Blascheová Z; Soukup A
    Ann Bot; 2017 Jul; 120(1):71-85. PubMed ID: 28605408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A genome-wide transcriptome map of pistachio (Pistacia vera L.) provides novel insights into salinity-related genes and marker discovery.
    Moazzzam Jazi M; Seyedi SM; Ebrahimie E; Ebrahimi M; De Moro G; Botanga C
    BMC Genomics; 2017 Aug; 18(1):627. PubMed ID: 28814265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting allelic effects for pistachio salinity tolerance in juvenile and mature trees.
    Sheikhi A; Arab MM; Davis M; Palmer WJ; Michelmore R; Brown PJ
    Sci Rep; 2023 Sep; 13(1):14391. PubMed ID: 37658100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SUBERMAN regulates developmental suberization of the Arabidopsis root endodermis.
    Cohen H; Fedyuk V; Wang C; Wu S; Aharoni A
    Plant J; 2020 May; 102(3):431-447. PubMed ID: 32027440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copalyl Diphosphate Synthase Mutation Improved Salt Tolerance in Maize (
    Zhang Y; Wang Y; Xing J; Wan J; Wang X; Zhang J; Wang X; Li Z; Zhang M
    Front Plant Sci; 2020; 11():457. PubMed ID: 32477376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apoplastic barrier development and water transport in Zea mays seedling roots under salt and osmotic stresses.
    Shen J; Xu G; Zheng HQ
    Protoplasma; 2015 Jan; 252(1):173-80. PubMed ID: 24965373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Luffa rootstock enhances salt tolerance and improves yield and quality of grafted cucumber plants by reducing sodium transport to the shoot.
    Guo Z; Qin Y; Lv J; Wang X; Dong H; Dong X; Zhang T; Du N; Piao F
    Environ Pollut; 2023 Jan; 316(Pt 1):120521. PubMed ID: 36309299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.