These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 34027321)
21. Solar-to-Chemical Energy Conversion with Photoelectrochemical Tandem Cells. Sivula K Chimia (Aarau); 2013; 67(3):155-61. PubMed ID: 23574955 [TBL] [Abstract][Full Text] [Related]
22. Photoelectrochemical Water Splitting Reaction System Based on Metal-Organic Halide Perovskites. Kim D; Lee DK; Kim SM; Park W; Sim U Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31947866 [TBL] [Abstract][Full Text] [Related]
23. All solution-processed lead halide perovskite-BiVO4 tandem assembly for photolytic solar fuels production. Chen YS; Manser JS; Kamat PV J Am Chem Soc; 2015 Jan; 137(2):974-81. PubMed ID: 25543877 [TBL] [Abstract][Full Text] [Related]
24. InGaAsP as a Promising Narrow Band Gap Semiconductor for Photoelectrochemical Water Splitting. Butson JD; Narangari PR; Lysevych M; Wong-Leung J; Wan Y; Karuturi SK; Tan HH; Jagadish C ACS Appl Mater Interfaces; 2019 Jul; 11(28):25236-25242. PubMed ID: 31265227 [TBL] [Abstract][Full Text] [Related]
25. Revisiting the Limiting Factors for Overall Water-Splitting on Organic Photocatalysts. Rahman M; Tian H; Edvinsson T Angew Chem Int Ed Engl; 2020 Sep; 59(38):16278-16293. PubMed ID: 32329950 [TBL] [Abstract][Full Text] [Related]
26. Vapor-Phase Photocatalytic Overall Water Splitting Using Hybrid Methylammonium Copper and Lead Perovskites. García T; García-Aboal R; Albero J; Atienzar P; García H Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32443491 [TBL] [Abstract][Full Text] [Related]
27. Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis. Dogutan DK; Nocera DG Acc Chem Res; 2019 Nov; 52(11):3143-3148. PubMed ID: 31593438 [TBL] [Abstract][Full Text] [Related]
28. Highly efficient photoelectrochemical water splitting by a hybrid tandem perovskite solar cell. Bin AR; Yusoff M; Jang J Chem Commun (Camb); 2016 Apr; 52(34):5824-7. PubMed ID: 27035707 [TBL] [Abstract][Full Text] [Related]
29. Hybrid Perovskite/Perovskite Heterojunction Solar Cells. Hu Y; Schlipf J; Wussler M; Petrus ML; Jaegermann W; Bein T; Müller-Buschbaum P; Docampo P ACS Nano; 2016 Jun; 10(6):5999-6007. PubMed ID: 27228558 [TBL] [Abstract][Full Text] [Related]
30. Chlorine-Incorporation-Induced Formation of the Layered Phase for Antimony-Based Lead-Free Perovskite Solar Cells. Jiang F; Yang D; Jiang Y; Liu T; Zhao X; Ming Y; Luo B; Qin F; Fan J; Han H; Zhang L; Zhou Y J Am Chem Soc; 2018 Jan; 140(3):1019-1027. PubMed ID: 29275630 [TBL] [Abstract][Full Text] [Related]
31. Solar Water Splitting Utilizing a SiC Photocathode, a BiVO Iwase A; Kudo A; Numata Y; Ikegami M; Miyasaka T; Ichikawa N; Kato M; Hashimoto H; Inoue H; Ishitani O; Tamiaki H ChemSusChem; 2017 Nov; 10(22):4420-4423. PubMed ID: 28960942 [TBL] [Abstract][Full Text] [Related]
32. Carbon-Based Photocathode Materials for Solar Hydrogen Production. Bellani S; Antognazza MR; Bonaccorso F Adv Mater; 2019 Mar; 31(9):e1801446. PubMed ID: 30221413 [TBL] [Abstract][Full Text] [Related]
33. Water Splitting Exceeding 17% Solar-to-Hydrogen Conversion Efficiency Using Solution-Processed Ni-Based Electrocatalysts and Perovskite/Si Tandem Solar Cell. Park H; Park IJ; Lee MG; Kwon KC; Hong SP; Kim DH; Lee SA; Lee TH; Kim C; Moon CW; Son DY; Jung GH; Yang HS; Lee JR; Lee J; Park NG; Kim SY; Kim JY; Jang HW ACS Appl Mater Interfaces; 2019 Sep; 11(37):33835-33843. PubMed ID: 31436403 [TBL] [Abstract][Full Text] [Related]
34. Absorption enhancement in methylammonium lead iodide perovskite solar cells with embedded arrays of dielectric particles. Jiménez-Solano A; Carretero-Palacios S; Míguez H Opt Express; 2018 Sep; 26(18):A865-A878. PubMed ID: 30184939 [TBL] [Abstract][Full Text] [Related]
35. Mechanistic Understanding of Efficient Photocatalytic H Wang H; Zhang H; Wang J; Gao Y; Fan F; Wu K; Zong X; Li C Angew Chem Int Ed Engl; 2021 Mar; 60(13):7376-7381. PubMed ID: 33590614 [TBL] [Abstract][Full Text] [Related]
36. Visible light water splitting using dye-sensitized oxide semiconductors. Youngblood WJ; Lee SH; Maeda K; Mallouk TE Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000 [TBL] [Abstract][Full Text] [Related]
38. Gap-plasmon enhanced water splitting with ultrathin hematite films: the role of plasmonic-based light trapping and hot electrons. Dutta A; Naldoni A; Malara F; Govorov AO; Shalaev VM; Boltasseva A Faraday Discuss; 2019 May; 214():283-295. PubMed ID: 30821797 [TBL] [Abstract][Full Text] [Related]
39. All inorganic semiconductor nanowire mesh for direct solar water splitting. Liu B; Wu CH; Miao J; Yang P ACS Nano; 2014 Nov; 8(11):11739-44. PubMed ID: 25365141 [TBL] [Abstract][Full Text] [Related]
40. Tantalum-based semiconductors for solar water splitting. Zhang P; Zhang J; Gong J Chem Soc Rev; 2014 Jul; 43(13):4395-422. PubMed ID: 24668282 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]