BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34027489)

  • 1. Spatial multi-omics sequencing for fixed tissue via DBiT-seq.
    Su G; Qin X; Enninful A; Bai Z; Deng Y; Liu Y; Fan R
    STAR Protoc; 2021 Jun; 2(2):100532. PubMed ID: 34027489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Spatial-Resolution Multi-Omics Sequencing via Deterministic Barcoding in Tissue.
    Liu Y; Yang M; Deng Y; Su G; Enninful A; Guo CC; Tebaldi T; Zhang D; Kim D; Bai Z; Norris E; Pan A; Li J; Xiao Y; Halene S; Fan R
    Cell; 2020 Dec; 183(6):1665-1681.e18. PubMed ID: 33188776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Million spot binding array platform for exploring and optimizing multiple simultaneous detection events.
    Gibbons M; Hong JM; Foster M; Chavarha M; Shao S; Ching L; Church VA; Schiff L; Ahadi S; Berndl M; Jess P; Pawlosky A
    STAR Protoc; 2022 Dec; 3(4):101829. PubMed ID: 36386871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slide-tags enables single-nucleus barcoding for multimodal spatial genomics.
    Russell AJC; Weir JA; Nadaf NM; Shabet M; Kumar V; Kambhampati S; Raichur R; Marrero GJ; Liu S; Balderrama KS; Vanderburg CR; Shanmugam V; Tian L; Iorgulescu JB; Yoon CH; Wu CJ; Macosko EZ; Chen F
    Nature; 2024 Jan; 625(7993):101-109. PubMed ID: 38093010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protocol for scChaRM-seq: Simultaneous profiling of gene expression, DNA methylation, and chromatin accessibility in single cells.
    Yan R; Cheng X; Guo F
    STAR Protoc; 2021 Dec; 2(4):100972. PubMed ID: 34849489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a sequencing system for spatial decoding of DNA barcode molecules at single-molecule resolution.
    Oguchi Y; Shintaku H; Uemura S
    Commun Biol; 2020 Dec; 3(1):788. PubMed ID: 33339962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplexing Methods for Simultaneous Large-Scale Transcriptomic Profiling of Samples at Single-Cell Resolution.
    Cheng J; Liao J; Shao X; Lu X; Fan X
    Adv Sci (Weinh); 2021 Sep; 8(17):e2101229. PubMed ID: 34240574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial transcriptomics of the nematode
    Schild ES; Mars J; Ebbing A; Vivié J; Betist M; Korswagen HC
    STAR Protoc; 2021 Jun; 2(2):100411. PubMed ID: 33870220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gel-seq: whole-genome and transcriptome sequencing by simultaneous low-input DNA and RNA library preparation using semi-permeable hydrogel barriers.
    Hoople GD; Richards A; Wu Y; Kaneko K; Luo X; Feng GS; Zhang K; Pisano AP
    Lab Chip; 2017 Jul; 17(15):2619-2630. PubMed ID: 28660979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing and cryopreservation of human ureter tissues for single-cell and spatial transcriptomics assays.
    Fink EE; Sona S; Lee BH; Ting AH
    STAR Protoc; 2022 Dec; 3(4):101854. PubMed ID: 36595885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol to combine brain sections from multiple mice into a single block for spatial transcriptomic analyses.
    Sei YJ; Chaumeil MM; Nakamura K
    STAR Protoc; 2023 Dec; 4(4):102617. PubMed ID: 37742175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of multiplexed transcriptome NGS libraries of microdissected tissue samples based on combinational DNA barcode microbeads.
    Dang K; Zhao Y; Ye K; Guo Y; Wang W; Ge Q; Zhao X
    Biotechnol J; 2024 Jan; 19(1):e2300294. PubMed ID: 37818700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Barcoded DNA nanostructures for the multiplexed profiling of subcellular protein distribution.
    Sundah NR; Ho NRY; Lim GS; Natalia A; Ding X; Liu Y; Seet JE; Chan CW; Loh TP; Shao H
    Nat Biomed Eng; 2019 Sep; 3(9):684-694. PubMed ID: 31285580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of Single-Cell Sequencing for Multiomics.
    Xu Y; Zhou X
    Methods Mol Biol; 2018; 1754():327-374. PubMed ID: 29536452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NAD-seq for profiling the NAD
    Yu X; Vandivier LE; Gregory BD
    STAR Protoc; 2021 Dec; 2(4):100901. PubMed ID: 34816126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GoT-Splice protocol for multi-omics profiling of gene expression, cell-surface proteins, mutational status, and RNA splicing in human cells.
    Ganesan S; Cortés-López M; Swett AD; Dai X; Hickey S; Chamely P; Hawkins AG; Juul S; Landau DA; Gaiti F
    STAR Protoc; 2024 Jun; 5(2):102966. PubMed ID: 38512867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of plant tissue to enable Spatial Transcriptomics profiling using barcoded microarrays.
    Giacomello S; Lundeberg J
    Nat Protoc; 2018 Nov; 13(11):2425-2446. PubMed ID: 30353173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Analysis of Droplet-Based Ultra-High-Throughput Single-Cell RNA-Seq Systems.
    Zhang X; Li T; Liu F; Chen Y; Yao J; Li Z; Huang Y; Wang J
    Mol Cell; 2019 Jan; 73(1):130-142.e5. PubMed ID: 30472192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue RNA Integrity in Visium Spatial Protocol (Fresh Frozen Samples).
    Antico F; Gai M; Arigoni M
    Methods Mol Biol; 2023; 2584():191-203. PubMed ID: 36495450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collection of cells for single-cell RNA sequencing using high-resolution fluorescence microscopy.
    Segeren HA; Andree KC; Oomens L; Westendorp B
    STAR Protoc; 2021 Sep; 2(3):100718. PubMed ID: 34401784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.