These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34027762)

  • 1. On the impact force analysis of two-leg landing with a flexed knee.
    Mojaddarasil M; Sadigh MJ
    Comput Methods Biomech Biomed Engin; 2021 Dec; 24(16):1862-1875. PubMed ID: 34027762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased hip and knee flexion during landing decreases tibiofemoral compressive forces in women who have undergone anterior cruciate ligament reconstruction.
    Tsai LC; Powers CM
    Am J Sports Med; 2013 Feb; 41(2):423-9. PubMed ID: 23271006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Prophylactic Knee Bracing on Lower Limb Kinematics, Kinetics, and Energetics During Double-Leg Drop Landing at 2 Heights.
    Ewing KA; Begg RK; Galea MP; Lee PV
    Am J Sports Med; 2016 Jul; 44(7):1753-61. PubMed ID: 27159284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relation between peak knee flexion angle and knee ankle kinetics in single-leg jump landing from running: a pilot study on male handball players to prevent ACL injury.
    Ameer MA; Muaidi QI
    Phys Sportsmed; 2017 Sep; 45(3):337-343. PubMed ID: 28628348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changing Sagittal-Plane Landing Styles to Modulate Impact and Tibiofemoral Force Magnitude and Directions Relative to the Tibia.
    Shimokochi Y; Ambegaonkar JP; Meyer EG
    J Athl Train; 2016 Sep; 51(9):669-681. PubMed ID: 27723362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of knee flexion angle on ground reaction forces, knee moments and muscle co-contraction during an impact-like deceleration landing: implications for the non-contact mechanism of ACL injury.
    Podraza JT; White SC
    Knee; 2010 Aug; 17(4):291-5. PubMed ID: 20303276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromuscular and biomechanical landing performance subsequent to ipsilateral semitendinosus and gracilis autograft anterior cruciate ligament reconstruction.
    Vairo GL; Myers JB; Sell TC; Fu FH; Harner CD; Lephart SM
    Knee Surg Sports Traumatol Arthrosc; 2008 Jan; 16(1):2-14. PubMed ID: 17973098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hamstrings stiffness and landing biomechanics linked to anterior cruciate ligament loading.
    Blackburn JT; Norcross MF; Cannon LN; Zinder SM
    J Athl Train; 2013; 48(6):764-72. PubMed ID: 24303987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antagonist muscle co-contraction during a double-leg landing maneuver at two heights.
    Mokhtarzadeh H; Yeow CH; Goh JCH; Oetomo D; Ewing K; Lee PVS
    Comput Methods Biomech Biomed Engin; 2017 Oct; 20(13):1382-1393. PubMed ID: 28836455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Young Athletes With Quadriceps Femoris Strength Asymmetry at Return to Sport After Anterior Cruciate Ligament Reconstruction Demonstrate Asymmetric Single-Leg Drop-Landing Mechanics.
    Ithurburn MP; Paterno MV; Ford KR; Hewett TE; Schmitt LC
    Am J Sports Med; 2015 Nov; 43(11):2727-37. PubMed ID: 26359376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The lower extremity biomechanics of single- and double-leg stop-jump tasks.
    Wang LI
    J Sports Sci Med; 2011; 10(1):151-6. PubMed ID: 24149308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the relationship between lower extremity muscles activation and peak vertical and posterior ground reaction forces during single leg drop landing.
    Mahaki M; Mi'mar R; Mahaki B
    J Sports Med Phys Fitness; 2015 Oct; 55(10):1145-9. PubMed ID: 25924564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regression relationships of landing height with ground reaction forces, knee flexion angles, angular velocities and joint powers during double-leg landing.
    Yeow CH; Lee PV; Goh JC
    Knee; 2009 Oct; 16(5):381-6. PubMed ID: 19250828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of upper-limb motion on lower-limb muscle synchrony. Implications for anterior cruciate ligament injury.
    Cowling EJ; Steele JR
    J Bone Joint Surg Am; 2001 Jan; 83(1):35-41. PubMed ID: 11205856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of Knee Flexion Angle Has Patient-Specific Effects on Anterior Cruciate Ligament Injury Risk Factors During Jump Landing.
    Favre J; Clancy C; Dowling AV; Andriacchi TP
    Am J Sports Med; 2016 Jun; 44(6):1540-6. PubMed ID: 26983457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing.
    Mokhtarzadeh H; Yeow CH; Hong Goh JC; Oetomo D; Malekipour F; Lee PV
    J Biomech; 2013 Jul; 46(11):1913-20. PubMed ID: 23731572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing hip and knee flexion during a drop-jump task reduces tibiofemoral shear and compressive forces: implications for ACL injury prevention training.
    Tsai LC; Ko YA; Hammond KE; Xerogeanes JW; Warren GL; Powers CM
    J Sports Sci; 2017 Dec; 35(24):2405-2411. PubMed ID: 28006992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower extremity muscle activation and knee flexion during a jump-landing task.
    Walsh M; Boling MC; McGrath M; Blackburn JT; Padua DA
    J Athl Train; 2012; 47(4):406-13. PubMed ID: 22889656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changing sagittal plane body position during single-leg landings influences the risk of non-contact anterior cruciate ligament injury.
    Shimokochi Y; Ambegaonkar JP; Meyer EG; Lee SY; Shultz SJ
    Knee Surg Sports Traumatol Arthrosc; 2013 Apr; 21(4):888-97. PubMed ID: 22543471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sagittal plane body kinematics and kinetics during single-leg landing from increasing vertical heights and horizontal distances: implications for risk of non-contact ACL injury.
    Ali N; Robertson DG; Rouhi G
    Knee; 2014 Jan; 21(1):38-46. PubMed ID: 23274067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.