These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34027762)

  • 21. Ankle-dorsiflexion range of motion and landing biomechanics.
    Fong CM; Blackburn JT; Norcross MF; McGrath M; Padua DA
    J Athl Train; 2011; 46(1):5-10. PubMed ID: 21214345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Biomechanical Comparison of Single-Leg Landing and Unplanned Sidestepping.
    Chinnasee C; Weir G; Sasimontonkul S; Alderson J; Donnelly C
    Int J Sports Med; 2018 Jul; 39(8):636-645. PubMed ID: 29902807
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-linear flexion relationships of the knee with the hip and ankle, and their relative postures during landing.
    Yeow CH; Lee PV; Goh JC
    Knee; 2011 Oct; 18(5):323-8. PubMed ID: 20638850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting neuromuscular control patterns that minimize ACL forces during injury-prone jump-landing manoeuvres in downhill skiing using a musculoskeletal simulation model.
    Heinrich D; van den Bogert AJ; Nachbauer W
    Eur J Sport Sci; 2023 May; 23(5):703-713. PubMed ID: 35400304
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Landing Kinematics and Kinetics at the Knee During Different Landing Tasks.
    Heebner NR; Rafferty DM; Wohleber MF; Simonson AJ; Lovalekar M; Reinert A; Sell TC
    J Athl Train; 2017 Dec; 52(12):1101-1108. PubMed ID: 29154692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parametric analysis of landing injury : The effect of landing posture and joint displacement.
    Mojaddarasil M; Sadigh MJ
    Phys Eng Sci Med; 2021 Sep; 44(3):755-772. PubMed ID: 34125408
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lower Limb Biomechanics During Single-Leg Landings Following Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis.
    Johnston PT; McClelland JA; Webster KE
    Sports Med; 2018 Sep; 48(9):2103-2126. PubMed ID: 29949109
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sagittal-plane trunk position, landing forces, and quadriceps electromyographic activity.
    Blackburn JT; Padua DA
    J Athl Train; 2009; 44(2):174-9. PubMed ID: 19295962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurements of tibiofemoral kinematics during soft and stiff drop landings using biplane fluoroscopy.
    Myers CA; Torry MR; Peterson DS; Shelburne KB; Giphart JE; Krong JP; Woo SL; Steadman JR
    Am J Sports Med; 2011 Aug; 39(8):1714-22. PubMed ID: 21602566
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of 2 landing techniques on knee kinematics, kinetics, and performance during stop-jump and side-cutting tasks.
    Dai B; Garrett WE; Gross MT; Padua DA; Queen RM; Yu B
    Am J Sports Med; 2015 Feb; 43(2):466-74. PubMed ID: 25367015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prophylactic knee bracing alters lower-limb muscle forces during a double-leg drop landing.
    Ewing KA; Fernandez JW; Begg RK; Galea MP; Lee PVS
    J Biomech; 2016 Oct; 49(14):3347-3354. PubMed ID: 27592299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of an Intervention Program on Lower Extremity Biomechanics in Stop-Jump and Side-Cutting Tasks.
    Yang C; Yao W; Garrett WE; Givens DL; Hacke J; Liu H; Yu B
    Am J Sports Med; 2018 Oct; 46(12):3014-3022. PubMed ID: 30148646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sex difference in effect of ankle landing biomechanics in sagittal plane on knee valgus moment during single-leg landing.
    Lee J; Shin CS
    Sci Rep; 2022 Nov; 12(1):18821. PubMed ID: 36335259
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of Foot-Landing Positions at Initial Contact on Knee Flexion Angles for Single-Leg Drop Landings.
    Teng PSP; Leong KF; Kong PW
    Res Q Exerc Sport; 2020 Jun; 91(2):316-325. PubMed ID: 31774376
    [No Abstract]   [Full Text] [Related]  

  • 35. Muscle contributions to tibiofemoral shear forces and valgus and rotational joint moments during single leg drop landing.
    Maniar N; Schache AG; Pizzolato C; Opar DA
    Scand J Med Sci Sports; 2020 Sep; 30(9):1664-1674. PubMed ID: 32416625
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elevated gastrocnemius forces compensate for decreased hamstrings forces during the weight-acceptance phase of single-leg jump landing: implications for anterior cruciate ligament injury risk.
    Morgan KD; Donnelly CJ; Reinbolt JA
    J Biomech; 2014 Oct; 47(13):3295-302. PubMed ID: 25218505
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bilateral Squatting Mechanics Are Associated With Landing Mechanics in Anterior Cruciate Ligament Reconstruction Patients.
    Peebles AT; Williams B; Queen RM
    Am J Sports Med; 2021 Aug; 49(10):2638-2644. PubMed ID: 34236927
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Association between ankle angle at initial contact and biomechanical ACL injury risk factors in male during self-selected single-leg landing.
    Lee J; Shin CS
    Gait Posture; 2021 Jan; 83():127-131. PubMed ID: 33130387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Associations Among Eccentric Hamstrings Strength, Hamstrings Stiffness, and Jump-Landing Biomechanics.
    Dewig DR; Goodwin JS; Pietrosimone BG; Blackburn JT
    J Athl Train; 2020 Jul; 55(7):717-723. PubMed ID: 32432902
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationship Between Force Production During Isometric Squats and Knee Flexion Angles During Landing.
    Fisher H; Stephenson ML; Graves KK; Hinshaw TJ; Smith DT; Zhu Q; Wilson MA; Dai B
    J Strength Cond Res; 2016 Jun; 30(6):1670-9. PubMed ID: 26566166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.