These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34027796)

  • 21. A clustering approach to integrate traffic safety in road maintenance prioritization.
    Janstrup KH; Møller M; Pilegaard N
    Traffic Inj Prev; 2019; 20(4):442-448. PubMed ID: 31074635
    [No Abstract]   [Full Text] [Related]  

  • 22. Use of local Moran's I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland.
    Zhang C; Luo L; Xu W; Ledwith V
    Sci Total Environ; 2008 Jul; 398(1-3):212-21. PubMed ID: 18440599
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Risk reduction via spatial and temporal visualization of road accidents: a way forward for emergency response optimization in developing countries.
    Qalb A; Arshad HSH; Nawaz MS; Hafeez A
    Int J Inj Contr Saf Promot; 2023 Jun; 30(2):310-320. PubMed ID: 36597796
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intersections and Non-Intersections: A Protocol for Identifying Pedestrian Crash Risk Locations in GIS.
    Kang M; Moudon AV; Kim H; Boyle LN
    Int J Environ Res Public Health; 2019 Sep; 16(19):. PubMed ID: 31554231
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Geographic areas with the highest concentration of traffic accidents in San Salvador, El Salvador: a spatial analysis of the 2014-2018 period.
    Mejía R; Quinteros E; Ribó Arnau A
    Rev Peru Med Exp Salud Publica; 2023; 40(4):413-422. PubMed ID: 38597469
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hotspots and social background of urban traffic crashes: A case study in Cluj-Napoca (Romania).
    Benedek J; Ciobanu SM; Man TC
    Accid Anal Prev; 2016 Feb; 87():117-26. PubMed ID: 26680130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial statistics and random forest approaches for traffic crash hot spot identification and prediction.
    Atumo EA; Fang T; Jiang X
    Int J Inj Contr Saf Promot; 2022 Jun; 29(2):207-216. PubMed ID: 34612168
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A spatial and temporal analysis of child pedestrian crashes in Santiago, Chile.
    Blazquez CA; Celis MS
    Accid Anal Prev; 2013 Jan; 50():304-11. PubMed ID: 22658462
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial variation and hotspot detection of COVID-19 cases in Kazakhstan, 2020.
    Kuznetsov A; Sadovskaya V
    Spat Spatiotemporal Epidemiol; 2021 Nov; 39():100430. PubMed ID: 34774254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GIS-based spatial analysis: basic sanitation services in Parana State, Southern Brazil.
    de Moura EN; Procopiuck M
    Environ Monit Assess; 2020 Jan; 192(2):96. PubMed ID: 31912299
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Traffic crash analysis with point-of-interest spatial clustering.
    Jia R; Khadka A; Kim I
    Accid Anal Prev; 2018 Dec; 121():223-230. PubMed ID: 30265908
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Geospatial approach to investigate spatial clustering and hotspots of blood lead levels in children within Kabwe, Zambia.
    Moonga G; Chisola MN; Berger U; Nowak D; Yabe J; Nakata H; Nakayama S; Ishizuka M; Bose-O'Reilly S
    Environ Res; 2022 May; 207():112646. PubMed ID: 34979123
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial prediction of human brucellosis (HB) using a GIS-based adaptive neuro-fuzzy inference system (ANFIS).
    Babaie E; Alesheikh AA; Tabasi M
    Acta Trop; 2021 Aug; 220():105951. PubMed ID: 33979640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High road utilizers surveys compared to police data for road traffic crash hotspot localization in Rwanda and Sri Lanka.
    Staton CA; De Silva V; Krebs E; Andrade L; Rulisa S; Mallawaarachchi BC; Jin K; RicardoVissoci J; Østbye T
    BMC Public Health; 2016 Jan; 16():53. PubMed ID: 26792526
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A multivariate spatial approach to model crash counts by injury severity.
    Xie K; Ozbay K; Yang H
    Accid Anal Prev; 2019 Jan; 122():189-198. PubMed ID: 30388574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial autocorrelation and hotspot analysis of natural radionuclides to study sediment transport.
    Mtshawu B; Bezuidenhout J; Kilel KK
    J Environ Radioact; 2023 Aug; 264():107207. PubMed ID: 37257360
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial analysis to identify high risk areas for traffic crashes resulting in death of pedestrians in Tehran.
    Moradi A; Soori H; Kavousi A; Eshghabadi F; Jamshidi E; Zeini S
    Med J Islam Repub Iran; 2016; 30():450. PubMed ID: 28210615
    [No Abstract]   [Full Text] [Related]  

  • 38. Clustering of Road Traffic Injuries During the 7-day Songkran Holiday, Thailand: A Spatial Analysis.
    Tubtimhin S; Laohasiriwong W; Pitaksanurat S; Sornlorm K; Luenam A
    Kathmandu Univ Med J (KUMJ); 2019 Jul-Sept.; 17(67):184-189. PubMed ID: 33305745
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validating crash locations for quantitative spatial analysis: a GIS-based approach.
    Loo BP
    Accid Anal Prev; 2006 Sep; 38(5):879-86. PubMed ID: 16574045
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple-scale spatial analysis of paediatric, pedestrian road traffic injuries in a major city in North-Eastern Iran 2015-2019.
    Shabanikiya H; Hashtarkhani S; Bergquist R; Bagheri N; VafaeiNejad R; Amiri-Gholanlou M; Akbari T; Kiani B
    BMC Public Health; 2020 May; 20(1):722. PubMed ID: 32430028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.