These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 34027942)
21. Enzyme Immobilization on Graphite Oxide (GO) Surface via One-Pot Synthesis of GO/Metal-Organic Framework Composites for Large-Substrate Biocatalysis. Farmakes J; Schuster I; Overby A; Alhalhooly L; Lenertz M; Li Q; Ugrinov A; Choi Y; Pan Y; Yang Z ACS Appl Mater Interfaces; 2020 May; 12(20):23119-23126. PubMed ID: 32338863 [TBL] [Abstract][Full Text] [Related]
22. "Recent advances on support materials for lipase immobilization and applicability as biocatalysts in inhibitors screening methods"-A review. Liu J; Ma RT; Shi YP Anal Chim Acta; 2020 Mar; 1101():9-22. PubMed ID: 32029123 [TBL] [Abstract][Full Text] [Related]
23. Immobilisation and application of lipases in organic media. Adlercreutz P Chem Soc Rev; 2013 Aug; 42(15):6406-36. PubMed ID: 23403895 [TBL] [Abstract][Full Text] [Related]
24. Enzyme Immobilization in Covalent Organic Frameworks: Strategies and Applications in Biocatalysis. Oliveira FL; de S França A; de Castro AM; Alves de Souza ROM; Esteves PM; Gonçalves RSB Chempluschem; 2020 Sep; 85(9):2051-2066. PubMed ID: 32909691 [TBL] [Abstract][Full Text] [Related]
26. Design of biocompatible immobilized Candida rugosa lipase with potential application in food industry. Trbojević Ivić J; Veličković D; Dimitrijević A; Bezbradica D; Dragačević V; Gavrović Jankulović M; Milosavić N J Sci Food Agric; 2016 Sep; 96(12):4281-7. PubMed ID: 26801832 [TBL] [Abstract][Full Text] [Related]
27. Relevance of substrates and products on the desorption of lipases physically adsorbed on hydrophobic supports. Virgen-Ortíz JJ; Tacias-Pascacio VG; Hirata DB; Torrestiana-Sanchez B; Rosales-Quintero A; Fernandez-Lafuente R Enzyme Microb Technol; 2017 Jan; 96():30-35. PubMed ID: 27871382 [TBL] [Abstract][Full Text] [Related]
28. Fabrication of novel hierarchically ordered porous magnetic nanocomposites for bio-catalysis. Sen T; Bruce IJ; Mercer T Chem Commun (Camb); 2010 Sep; 46(36):6807-9. PubMed ID: 20714554 [TBL] [Abstract][Full Text] [Related]
29. The Chemistry and Applications of Metal-Organic Frameworks (MOFs) as Industrial Enzyme Immobilization Systems. Silva ARM; Alexandre JYNH; Souza JES; Neto JGL; de Sousa Júnior PG; Rocha MVP; Dos Santos JCS Molecules; 2022 Jul; 27(14):. PubMed ID: 35889401 [TBL] [Abstract][Full Text] [Related]
30. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Rodrigues RC; Virgen-Ortíz JJ; Dos Santos JCS; Berenguer-Murcia Á; Alcantara AR; Barbosa O; Ortiz C; Fernandez-Lafuente R Biotechnol Adv; 2019; 37(5):746-770. PubMed ID: 30974154 [TBL] [Abstract][Full Text] [Related]
31. Harnessing the biocatalytic attributes and applied perspectives of nanoengineered laccases-A review. Bilal M; Ashraf SS; Cui J; Lou WY; Franco M; Mulla SI; Iqbal HMN Int J Biol Macromol; 2021 Jan; 166():352-373. PubMed ID: 33129906 [TBL] [Abstract][Full Text] [Related]
32. Mussel-inspired surface modification of magnetic@graphite nanosheets composite for efficient Candida rugosa lipase immobilization. Hou C; Zhou L; Zhu H; Wang X; Hu N; Zeng F; Wang L; Yin H J Ind Microbiol Biotechnol; 2015 May; 42(5):723-34. PubMed ID: 25752766 [TBL] [Abstract][Full Text] [Related]
33. Enzyme immobilisation in biocatalysis: why, what and how. Sheldon RA; van Pelt S Chem Soc Rev; 2013 Aug; 42(15):6223-35. PubMed ID: 23532151 [TBL] [Abstract][Full Text] [Related]
34. Effect of protein load on stability of immobilized enzymes. Fernandez-Lopez L; Pedrero SG; Lopez-Carrobles N; Gorines BC; Virgen-Ortíz JJ; Fernandez-Lafuente R Enzyme Microb Technol; 2017 Mar; 98():18-25. PubMed ID: 28110660 [TBL] [Abstract][Full Text] [Related]
35. Covalent organic frameworks as emerging host platforms for enzyme immobilization and robust biocatalysis - A review. Gan J; Bagheri AR; Aramesh N; Gul I; Franco M; Almulaiky YQ; Bilal M Int J Biol Macromol; 2021 Jan; 167():502-515. PubMed ID: 33279559 [TBL] [Abstract][Full Text] [Related]
36. Thermostable enzyme-immobilized magnetic responsive Ni-based metal-organic framework nanorods as recyclable biocatalysts for efficient biosynthesis of S-adenosylmethionine. He J; Sun S; Zhou Z; Yuan Q; Liu Y; Liang H Dalton Trans; 2019 Feb; 48(6):2077-2085. PubMed ID: 30657139 [TBL] [Abstract][Full Text] [Related]
37. Bicontinuous Nanoporous Frameworks: Caged Longevity for Enzymes. Bae JS; Jeon E; Moon SY; Oh W; Han SY; Lee JH; Yang SY; Kim DM; Park JW Angew Chem Int Ed Engl; 2016 Sep; 55(38):11495-8. PubMed ID: 27513827 [TBL] [Abstract][Full Text] [Related]
38. Enhancing Enzyme Immobilization on Carbon Nanotubes via Metal-Organic Frameworks for Large-Substrate Biocatalysis. Neupane S; Patnode K; Li H; Baryeh K; Liu G; Hu J; Chen B; Pan Y; Yang Z ACS Appl Mater Interfaces; 2019 Mar; 11(12):12133-12141. PubMed ID: 30839195 [TBL] [Abstract][Full Text] [Related]
39. Single-Particle and Single-Molecule Characterization of Immobilized Enzymes: A Multiscale Path toward Optimizing Heterogeneous Biocatalysts. Diamanti E; López-Gallego F Angew Chem Int Ed Engl; 2024 May; 63(20):e202319248. PubMed ID: 38476019 [TBL] [Abstract][Full Text] [Related]
40. Immobilizing enzymes: how to create more suitable biocatalysts. Bornscheuer UT Angew Chem Int Ed Engl; 2003 Jul; 42(29):3336-7. PubMed ID: 12888957 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]