BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 34027943)

  • 1. Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion.
    Feng Y; Long S; Tang X; Sun Y; Luque R; Zeng X; Lin L
    Chem Soc Rev; 2021 May; 50(10):6042-6093. PubMed ID: 34027943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels.
    De S; Saha B; Luque R
    Bioresour Technol; 2015 Feb; 178():108-118. PubMed ID: 25443804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond.
    Omoruyi U; Page S; Hallett J; Miller PW
    ChemSusChem; 2016 Aug; 9(16):2037-47. PubMed ID: 27464831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Copper in the Hydrogenation of Furfural and Levulinic Acid.
    García-Sancho C; Mérida-Robles JM; Cecilia-Buenestado JA; Moreno-Tost R; Maireles-Torres PJ
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protection Strategies Enable Selective Conversion of Biomass.
    Luo X; Li Y; Gupta NK; Sels B; Ralph J; Shuai L
    Angew Chem Int Ed Engl; 2020 Jul; 59(29):11704-11716. PubMed ID: 32017337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels.
    Zhou CH; Xia X; Lin CX; Tong DS; Beltramini J
    Chem Soc Rev; 2011 Nov; 40(11):5588-617. PubMed ID: 21863197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recyclable Earth-Abundant Metal Nanoparticle Catalysts for Selective Transfer Hydrogenation of Levulinic Acid to Produce γ-Valerolactone.
    Gowda RR; Chen EY
    ChemSusChem; 2016 Jan; 9(2):181-5. PubMed ID: 26735911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass.
    Li D; Tamura M; Nakagawa Y; Tomishige K
    Bioresour Technol; 2015 Feb; 178():53-64. PubMed ID: 25455089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrothermal conversion of xylose, glucose, and cellulose under the catalysis of transition metal sulfates.
    Cao X; Peng X; Sun S; Zhong L; Chen W; Wang S; Sun RC
    Carbohydr Polym; 2015 Mar; 118():44-51. PubMed ID: 25542106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-Pot 2-Methyltetrahydrofuran Production from Levulinic Acid in Green Solvents Using Ni-Cu/Al2 O3 Catalysts.
    Obregón I; Gandarias I; Miletić N; Ocio A; Arias PL
    ChemSusChem; 2015 Oct; 8(20):3483-8. PubMed ID: 26350168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production.
    Ma R; Xu Y; Zhang X
    ChemSusChem; 2015 Jan; 8(1):24-51. PubMed ID: 25272962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass.
    Zhang J; Li J; Tang Y; Lin L; Long M
    Carbohydr Polym; 2015 Oct; 130():420-8. PubMed ID: 26076643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MoO
    Wang L; Yang Y; Yin P; Ren Z; Liu W; Tian Z; Zhang Y; Xu E; Yin J; Wei M
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31799-31807. PubMed ID: 34197068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bimetallic catalysts for upgrading of biomass to fuels and chemicals.
    Alonso DM; Wettstein SG; Dumesic JA
    Chem Soc Rev; 2012 Dec; 41(24):8075-98. PubMed ID: 22872312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic conversion of renewable biomass resources to fuels and chemicals.
    Serrano-Ruiz JC; West RM; Dumesic JA
    Annu Rev Chem Biomol Eng; 2010; 1():79-100. PubMed ID: 22432574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenges and recent advancements in the transformation of CO
    Cauwenbergh R; Goyal V; Maiti R; Natte K; Das S
    Chem Soc Rev; 2022 Nov; 51(22):9371-9423. PubMed ID: 36305783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Top chemical opportunities from carbohydrate biomass: a chemist's view of the Biorefinery.
    Dusselier M; Mascal M; Sels BF
    Top Curr Chem; 2014; 353():1-40. PubMed ID: 24842622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrocatalytic Hydrogenation of Oxygenates using Earth-Abundant Transition-Metal Nanoparticles under Mild Conditions.
    Carroll KJ; Burger T; Langenegger L; Chavez S; Hunt ST; Román-Leshkov Y; Brushett FR
    ChemSusChem; 2016 Aug; 9(15):1904-10. PubMed ID: 27337680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-driven transformation of biomass into chemicals using photocatalysts - Vistas and challenges.
    Navakoteswara Rao V; Malu TJ; Cheralathan KK; Sakar M; Pitchaimuthu S; Rodríguez-González V; Mamatha Kumari M; Shankar MV
    J Environ Manage; 2021 Apr; 284():111983. PubMed ID: 33529884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in Aqueous-Phase Catalytic Conversions of Biomass Platform Chemicals Over Heterogeneous Catalysts.
    Li X; Zhang L; Wang S; Wu Y
    Front Chem; 2019; 7():948. PubMed ID: 32117861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.