These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34028056)

  • 1. Measurement of the amplitude and phase of the electrophoretic and electroosmotic mobility based on fast single-particle tracking.
    Amer Cid Í; Ussembayev YY; Neyts K; Strubbe F
    Electrophoresis; 2021 Aug; 42(16):1623-1635. PubMed ID: 34028056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields.
    Sadek SH; Pimenta F; Pinho FT; Alves MA
    Electrophoresis; 2017 Apr; 38(7):1022-1037. PubMed ID: 27990654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ particle zeta potential evaluation in electroosmotic flows from time-resolved microPIV measurements.
    Sureda M; Miller A; Diez FJ
    Electrophoresis; 2012 Sep; 33(17):2759-68. PubMed ID: 22965723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear electrophoresis of dielectric particles in Newtonian fluids.
    Bentor J; Dort H; Chitrao RA; Zhang Y; Xuan X
    Electrophoresis; 2023 Jun; 44(11-12):938-946. PubMed ID: 36495043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous Determination of Linear and Nonlinear Electrophoretic Mobilities of Cells and Microparticles.
    Antunez-Vela S; Perez-Gonzalez VH; De Peña AC; Lentz CJ; Lapizco-Encinas BH
    Anal Chem; 2020 Nov; 92(22):14885-14891. PubMed ID: 33108182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous sizing and electrophoretic mobility measurement of sub-micron particles using Brownian motion.
    Palanisami A; Miller JH
    Electrophoresis; 2010 Oct; 31(21):3613-8. PubMed ID: 20882556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated measurement of the mass and surface charge of discrete microparticles using a suspended microchannel resonator.
    Dextras P; Burg TP; Manalis SR
    Anal Chem; 2009 Jun; 81(11):4517-23. PubMed ID: 19476391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast electrokinetics.
    Rouhi Youssefi M; Diez FJ
    Electrophoresis; 2016 Mar; 37(5-6):692-8. PubMed ID: 26840989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring the electrophoretic mobility and size of single particles using microfluidic transverse AC electrophoresis (TrACE).
    Choi MH; Hong L; Chamorro LP; Edwards B; Timperman AT
    Lab Chip; 2023 Dec; 24(1):20-33. PubMed ID: 37937351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis.
    Lin SC; Lu JC; Sung YL; Lin CT; Tung YC
    Lab Chip; 2013 Aug; 13(15):3082-9. PubMed ID: 23753015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrothermal flow effects in insulating (electrodeless) dielectrophoresis systems.
    Hawkins BG; Kirby BJ
    Electrophoresis; 2010 Nov; 31(22):3622-33. PubMed ID: 21077234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobilization of electroosmotic flow markers in capillary zone electrophoresis.
    Martínková E; Křížek T; Kubíčková A; Coufal P
    Electrophoresis; 2021 Apr; 42(7-8):932-938. PubMed ID: 33570209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for determining electrophoretic and electroosmotic mobilities using AC and DC electric field particle displacements.
    Oddy MH; Santiago JG
    J Colloid Interface Sci; 2004 Jan; 269(1):192-204. PubMed ID: 14651913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated particle electrophoresis:  modeling and control of adverse chamber surface properties.
    Knox RJ; Burns NL; Van Alstine JM; Harris JM; Seaman GV
    Anal Chem; 1998 Jun; 70(11):2268-79. PubMed ID: 21644639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of entrance effects on particle electrophoretic behavior near a nanopore for resistive pulse sensing.
    Hsu C; Lin CY; Alizadeh A; Daiguji H; Hsu WL
    Electrophoresis; 2021 Nov; 42(21-22):2206-2214. PubMed ID: 34472124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulating particles in microfluidics by floating electrodes.
    Yalcin SE; Sharma A; Qian S; Joo SW; Baysal O
    Electrophoresis; 2010 Nov; 31(22):3711-8. PubMed ID: 20945412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separating large microscale particles by exploiting charge differences with dielectrophoresis.
    Polniak DV; Goodrich E; Hill N; Lapizco-Encinas BH
    J Chromatogr A; 2018 Apr; 1545():84-92. PubMed ID: 29510869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical and experimental analysis of negative dielectrophoresis-induced particle trajectories.
    Luna R; Heineck DP; Bucher E; Heiser L; Ibsen SD
    Electrophoresis; 2022 Jun; 43(12):1366-1377. PubMed ID: 35377504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards a quantitative free flow electrophoresis and its application to particle size separations.
    Martynov A; Schepkina J; Chestkov V; Radko SP; Kolosova I; Chrambac A
    Prep Biochem Biotechnol; 2000 Nov; 30(4):331-41. PubMed ID: 11065278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of pressure on electrophoretic mobility of polystyrene latex particles.
    Sakakibara A; Kitagawa S; Tsuda T
    Electrophoresis; 2004 Jun; 25(12):1817-22. PubMed ID: 15213979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.