BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34028248)

  • 1. High-Sensitivity Micro-Gas Chromatograph-Photoionization Detector for Trace Vapor Detection.
    Wei-Hao Li M; Ghosh A; Venkatasubramanian A; Sharma R; Huang X; Fan X
    ACS Sens; 2021 Jun; 6(6):2348-2355. PubMed ID: 34028248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-flame ionization detector with a novel structure for portable gas chromatograph.
    Wang J; Wang H; Duan C; Guan Y
    Talanta; 2010 Aug; 82(3):1022-6. PubMed ID: 20678662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfabricated gas chromatograph for the selective determination of trichloroethylene vapor at sub-parts-per-billion concentrations in complex mixtures.
    Kim SK; Chang H; Zellers ET
    Anal Chem; 2011 Sep; 83(18):7198-206. PubMed ID: 21859085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-cost photoionization sensors as detectors in GC × GC systems designed for ambient VOC measurements.
    Pang X; Nan H; Zhong J; Ye D; Shaw MD; Lewis AC
    Sci Total Environ; 2019 May; 664():771-779. PubMed ID: 30763857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A portable gas chromatograph for real-time monitoring of aromatic volatile organic compounds in air samples.
    You DW; Seon YS; Jang Y; Bang J; Oh JS; Jung KW
    J Chromatogr A; 2020 Aug; 1625():461267. PubMed ID: 32709320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow-through microfluidic photoionization detectors for rapid and highly sensitive vapor detection.
    Zhu H; Nidetz R; Zhou M; Lee J; Buggaveeti S; Kurabayashi K; Fan X
    Lab Chip; 2015 Jul; 15(14):3021-9. PubMed ID: 26076383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a portable gas chromatograph with photoionization detector under variations of VOC concentration, temperature, and relative humidity.
    Soo JC; Lee EG; LeBouf RF; Kashon ML; Chisholm W; Harper M
    J Occup Environ Hyg; 2018 Apr; 15(4):351-360. PubMed ID: 29333991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of calibration environment on the performance of direct-reading organic vapor monitors.
    LeBouf RF; Slaven JE; Coffey CC
    J Air Waste Manag Assoc; 2013 May; 63(5):528-33. PubMed ID: 23786144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evaluation of the response of some portable, direct-reading 10.2 eV and 11.8 eV photoionization detectors, and a flame ionization gas chromatograph for organic vapors in high humidity atmospheres.
    Barsky JB; Que Hee SS; Clark CS
    Am Ind Hyg Assoc J; 1985 Jan; 46(1):9-14. PubMed ID: 4025151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A monolithically-integrated μGC chemical sensor system.
    Manginell RP; Bauer JM; Moorman MW; Sanchez LJ; Anderson JM; Whiting JJ; Porter DA; Copic D; Achyuthan KE
    Sensors (Basel); 2011; 11(7):6517-32. PubMed ID: 22163970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The novel selected-ion flow tube approach to trace gas analysis of air and breath.
    Smith D; Spanel P
    Rapid Commun Mass Spectrom; 1996; 10(10):1183-98. PubMed ID: 8759327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of interferents on the performance of direct-reading organic vapor monitors.
    LeBouf RF; Coffey CC
    J Air Waste Manag Assoc; 2015 Mar; 65(3):261-9. PubMed ID: 25947122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compact, Automated, Inexpensive, and Field-Deployable Vacuum-Outlet Gas Chromatograph for Trace-Concentration Gas-Phase Organic Compounds.
    Skog KM; Xiong F; Kawashima H; Doyle E; Soto R; Gentner DR
    Anal Chem; 2019 Jan; 91(2):1318-1327. PubMed ID: 30605307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Power Miniaturized Helium Dielectric Barrier Discharge Photoionization Detectors for Highly Sensitive Vapor Detection.
    Zhu H; Zhou M; Lee J; Nidetz R; Kurabayashi K; Fan X
    Anal Chem; 2016 Sep; 88(17):8780-6. PubMed ID: 27559931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smart multi-channel two-dimensional micro-gas chromatography for rapid workplace hazardous volatile organic compounds measurement.
    Liu J; Seo JH; Li Y; Chen D; Kurabayashi K; Fan X
    Lab Chip; 2013 Mar; 13(5):818-25. PubMed ID: 23303462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental performances study of a transportable GC-PID and two thermo-desorption based methods coupled to FID and MS detection to assess BTEX exposure at sub-ppb level in air.
    Liaud C; Nguyen NT; Nasreddine R; Le Calvé S
    Talanta; 2014 Sep; 127():33-42. PubMed ID: 24913854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of thermal desorption kinetics on vapor injection peak irregularities by a microscale gas chromatography preconcentrator.
    Seo JH; Liu J; Fan X; Kurabayashi K
    Anal Chem; 2012 Aug; 84(15):6336-40. PubMed ID: 22780835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Additivity of detector responses of a portable direct-reading 10.2 eV photoionization detector and a flame ionization gas chromatograph for atmospheres of multicomponent organics: use of PID/FID ratios.
    Lee IN; Que Hee SS; Clark CS
    Am Ind Hyg Assoc J; 1987 May; 48(5):437-41. PubMed ID: 3591664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ calibration of micro-photoionization detectors in a multi-dimensional micro-gas chromatography system.
    Lee J; Zhou M; Zhu H; Nidetz R; Kurabayashi K; Fan X
    Analyst; 2016 Jun; 141(13):4100-7. PubMed ID: 27152367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-stage preconcentrator/focuser module designed to enable trace level determinations of trichloroethylene in indoor air with a microfabricated gas chromatograph.
    Sukaew T; Chang H; Serrano G; Zellers ET
    Analyst; 2011 Apr; 136(8):1664-74. PubMed ID: 21359357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.