These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 34028475)
21. Poly- and perfluoroalkyl substances in wastewater: Significance of unknown precursors, manufacturing shifts, and likely AFFF impacts. Houtz EF; Sutton R; Park JS; Sedlak M Water Res; 2016 May; 95():142-9. PubMed ID: 26990839 [TBL] [Abstract][Full Text] [Related]
22. Per- and Polyfluorinated Alkyl Substances (PFAS) cycling within Michigan: Contaminated sites, landfills and wastewater treatment plants. Helmer RW; Reeves DM; Cassidy DP Water Res; 2022 Feb; 210():117983. PubMed ID: 34954365 [TBL] [Abstract][Full Text] [Related]
23. Detection of ultrashort-chain and other per- and polyfluoroalkyl substances (PFAS) in U.S. bottled water. Chow SJ; Ojeda N; Jacangelo JG; Schwab KJ Water Res; 2021 Aug; 201():117292. PubMed ID: 34118648 [TBL] [Abstract][Full Text] [Related]
24. PFAS in municipal landfill leachate: Occurrence, transformation, and sources. Capozzi SL; Leang AL; Rodenburg LA; Chandramouli B; Delistraty DA; Carter CH Chemosphere; 2023 Sep; 334():138924. PubMed ID: 37209854 [TBL] [Abstract][Full Text] [Related]
25. Target and non-target analyses of neutral per- and polyfluoroalkyl substances from fluorochemical industries using GC-MS/MS and GC-TOF: Insights on their environmental fate. Mok S; Lee S; Choi Y; Jeon J; Kim YH; Moon HB Environ Int; 2023 Dec; 182():108311. PubMed ID: 37988936 [TBL] [Abstract][Full Text] [Related]
26. The significance of fluorinated compound chain length, treatment technology, and influent composition on per- and polyfluoroalkyl substances removal in worldwide wastewater treatment plants. Ilieva Z; Hamza RA; Suehring R Integr Environ Assess Manag; 2024 Jan; 20(1):59-69. PubMed ID: 37096563 [TBL] [Abstract][Full Text] [Related]
27. Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Kurwadkar S; Dane J; Kanel SR; Nadagouda MN; Cawdrey RW; Ambade B; Struckhoff GC; Wilkin R Sci Total Environ; 2022 Feb; 809():151003. PubMed ID: 34695467 [TBL] [Abstract][Full Text] [Related]
28. Comprehensive profiles of per- and polyfluoroalkyl substances in Chinese and African municipal wastewater treatment plants: New implications for removal efficiency. Jiang L; Yao J; Ren G; Sheng N; Guo Y; Dai J; Pan Y Sci Total Environ; 2023 Jan; 857(Pt 3):159638. PubMed ID: 36280053 [TBL] [Abstract][Full Text] [Related]
29. Comparing occurrence of per- and polyfluoroalkyl substances (PFAS) in municipal biosolids and industrial wastewater sludge: A City of Los Angeles study. Otim O Sci Total Environ; 2024 Dec; 954():176268. PubMed ID: 39278486 [TBL] [Abstract][Full Text] [Related]
30. Targeted and Suspect Screening of Per- and Polyfluoroalkyl Substances in Cosmetics and Personal Care Products. Harris KJ; Munoz G; Woo V; Sauvé S; Rand AA Environ Sci Technol; 2022 Oct; 56(20):14594-14604. PubMed ID: 36178710 [TBL] [Abstract][Full Text] [Related]
31. Spatial distribution of per- and polyfluoroalkyl substances (PFAS) in waters from Central and South Florida. Li X; Fatowe M; Lemos L; Quinete N Environ Sci Pollut Res Int; 2022 Dec; 29(56):84383-84395. PubMed ID: 35780268 [TBL] [Abstract][Full Text] [Related]
32. Contribution of precursor compounds to the release of per- and polyfluoroalkyl substances (PFASs) from waste water treatment plants (WWTPs). Eriksson U; Haglund P; Kärrman A J Environ Sci (China); 2017 Nov; 61():80-90. PubMed ID: 29191318 [TBL] [Abstract][Full Text] [Related]
33. Swimming with PFAS in public and private pools. Martinez B; Robey NM; Da Silva BF; Ditz H; Sobczak WJ; Deliz Quiñones KY; Bowden JA Chemosphere; 2023 Jan; 310():136765. PubMed ID: 36241119 [TBL] [Abstract][Full Text] [Related]
34. Non-target discovery and risk prediction of per- and polyfluoroalkyl substances (PFAS) and transformation products in wastewater treatment systems. Liu T; Hu LX; Han Y; Xiao S; Dong LL; Yang YY; Liu YS; Zhao JL; Ying GG J Hazard Mater; 2024 Sep; 476():135081. PubMed ID: 38964036 [TBL] [Abstract][Full Text] [Related]
35. Management of per- and polyfluoroalkyl substances (PFAS)-laden wastewater sludge in Maine: Perspectives on a wicked problem. Moavenzadeh Ghaznavi S; Zimmerman C; Shea ME; MacRae JD; Peckenham JM; Noblet CL; Apul OG; Kopec AD Biointerphases; 2023 Jul; 18(4):. PubMed ID: 37602771 [TBL] [Abstract][Full Text] [Related]
36. Disposal of products and materials containing per- and polyfluoroalkyl substances (PFAS): A cyclical problem. Stoiber T; Evans S; Naidenko OV Chemosphere; 2020 Dec; 260():127659. PubMed ID: 32698118 [TBL] [Abstract][Full Text] [Related]
37. Per- and polyfluoroalkyl substances (PFAS) in final treated solids (Biosolids) from 190 Michigan wastewater treatment plants. Link GW; Reeves DM; Cassidy DP; Coffin ES J Hazard Mater; 2024 Feb; 463():132734. PubMed ID: 37922581 [TBL] [Abstract][Full Text] [Related]
38. Occurrence and health risk assessment of PFAS and possible precursors: a case study in a drinking water treatment plant and bottled water (south Catalonia, Spain). Martínez J; Picardo M; Peñalver A; Fabregas J; Aguilar C; Borrull F Environ Sci Pollut Res Int; 2024 Sep; 31(45):56536-56549. PubMed ID: 39271611 [TBL] [Abstract][Full Text] [Related]
39. A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants. Lenka SP; Kah M; Padhye LP Water Res; 2021 Jul; 199():117187. PubMed ID: 34010737 [TBL] [Abstract][Full Text] [Related]
40. Exploring the variability of PFAS in urban sewage: a comparison of emissions in commercial N K; E S; J D; C G; J K; N K; M Z; O Z Environ Sci Process Impacts; 2024 Oct; 26(10):1868-1878. PubMed ID: 39268638 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]