BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 34028523)

  • 1. Production of proteins and commodity chemicals using engineered Bacillus subtilis platform strain.
    Zhang Q; Wu Y; Gong M; Zhang H; Liu Y; Lv X; Li J; Du G; Liu L
    Essays Biochem; 2021 Jul; 65(2):173-185. PubMed ID: 34028523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications.
    Gu Y; Xu X; Wu Y; Niu T; Liu Y; Li J; Du G; Liu L
    Metab Eng; 2018 Nov; 50():109-121. PubMed ID: 29775652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Bacillus subtilis for l-valine overproduction.
    Westbrook AW; Ren X; Moo-Young M; Chou CP
    Biotechnol Bioeng; 2018 Nov; 115(11):2778-2792. PubMed ID: 29981237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic Biology Toolbox and Chassis Development in Bacillus subtilis.
    Liu Y; Liu L; Li J; Du G; Chen J
    Trends Biotechnol; 2019 May; 37(5):548-562. PubMed ID: 30446263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systems metabolic engineering of Bacillus subtilis for efficient biosynthesis of 5-methyltetrahydrofolate.
    Yang H; Liu Y; Li J; Liu L; Du G; Chen J
    Biotechnol Bioeng; 2020 Jul; 117(7):2116-2130. PubMed ID: 32170863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Strategies and tools for metabolic engineering in Bacillus subtilis].
    Lü X; Wu Y; Lin L; Xu X; Yu W; Cui S; Li J; Du G; Liu L
    Sheng Wu Gong Cheng Xue Bao; 2021 May; 37(5):1619-1636. PubMed ID: 34085446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis.
    Zhang X; Liu Y; Liu L; Wang M; Li J; Du G; Chen J
    Biotechnol Bioeng; 2018 Sep; 115(9):2217-2231. PubMed ID: 29896807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine.
    Su Y; Liu C; Fang H; Zhang D
    Microb Cell Fact; 2020 Sep; 19(1):173. PubMed ID: 32883293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering design to enhance (R,R)-2,3-butanediol production from glycerol in Bacillus subtilis based on flux balance analysis.
    Vikromvarasiri N; Shirai T; Kondo A
    Microb Cell Fact; 2021 Oct; 20(1):196. PubMed ID: 34627250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Bacillus subtilis for terpenoid production.
    Guan Z; Xue D; Abdallah II; Dijkshoorn L; Setroikromo R; Lv G; Quax WJ
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9395-406. PubMed ID: 26373726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positioning Bacillus subtilis as terpenoid cell factory.
    Pramastya H; Song Y; Elfahmi EY; Sukrasno S; Quax WJ
    J Appl Microbiol; 2021 Jun; 130(6):1839-1856. PubMed ID: 33098223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond.
    Cui W; Han L; Suo F; Liu Z; Zhou L; Zhou Z
    World J Microbiol Biotechnol; 2018 Sep; 34(10):145. PubMed ID: 30203131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Research progress and industrial application of Bacillus subtilis in systematic and synthetic biotechnology].
    Kang Q; Xiang M; Zhang D
    Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):923-938. PubMed ID: 33783158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of uridine production in Bacillus subtilis by metabolic engineering.
    Wang Y; Ma R; Liu L; He L; Ban R
    Biotechnol Lett; 2018 Jan; 40(1):151-155. PubMed ID: 29038923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Bacillus subtilis for production of D-lactic acid.
    Awasthi D; Wang L; Rhee MS; Wang Q; Chauliac D; Ingram LO; Shanmugam KT
    Biotechnol Bioeng; 2018 Feb; 115(2):453-463. PubMed ID: 28986980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of amorphadiene synthesis in bacillus subtilis via transcriptional, translational, and media modulation.
    Zhou K; Zou R; Zhang C; Stephanopoulos G; Too HP
    Biotechnol Bioeng; 2013 Sep; 110(9):2556-61. PubMed ID: 23483530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of genome-reduced Bacillus subtilis strains and their application for the production of guanosine and thymidine.
    Li Y; Zhu X; Zhang X; Fu J; Wang Z; Chen T; Zhao X
    Microb Cell Fact; 2016 Jun; 15():94. PubMed ID: 27260256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of culture medium confers high-specificity production of isopentenol in Bacillus subtilis.
    Phulara SC; Chaturvedi P; Chaurasia D; Diwan B; Gupta P
    J Biosci Bioeng; 2019 Apr; 127(4):458-464. PubMed ID: 30862359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology.
    Liu L; Liu Y; Shin HD; Chen RR; Wang NS; Li J; Du G; Chen J
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6113-27. PubMed ID: 23749118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering genome-reduced Bacillus subtilis for acetoin production from xylose.
    Yan P; Wu Y; Yang L; Wang Z; Chen T
    Biotechnol Lett; 2018 Feb; 40(2):393-398. PubMed ID: 29236191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.