BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 34029162)

  • 1.
    Shi Y; Pizzini J; Wang H; Das F; Abdul Azees PA; Ghosh Choudhury G; Barnes JL; Zang M; Weintraub ST; Yeh CK; Katz MS; Kamat A
    Am J Physiol Endocrinol Metab; 2021 Jul; 321(1):E90-E104. PubMed ID: 34029162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. β2-Adrenergic receptor ablation modulates hepatic lipid accumulation and glucose tolerance in aging mice.
    Shi Y; Shu ZJ; Xue X; Yeh CK; Katz MS; Kamat A
    Exp Gerontol; 2016 Jun; 78():32-8. PubMed ID: 26952573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel role of CRTC2 in promoting nonalcoholic fatty liver disease.
    Han HS; Kim SG; Kim YS; Jang SH; Kwon Y; Choi D; Huh T; Moon E; Ahn E; Seong JK; Kweon HS; Hwang GS; Lee DH; Cho KW; Koo SH
    Mol Metab; 2022 Jan; 55():101402. PubMed ID: 34838715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of β-adrenergic receptors in regulation of hepatic fat accumulation during aging.
    Ghosh PM; Shu ZJ; Zhu B; Lu Z; Ikeno Y; Barnes JL; Yeh CK; Zhang BX; Katz MS; Kamat A
    J Endocrinol; 2012 Jun; 213(3):251-61. PubMed ID: 22457517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The protective effects of the β3 adrenergic receptor agonist BRL37344 against liver steatosis and inflammation in a rat model of high-fat diet-induced nonalcoholic fatty liver disease (NAFLD).
    Wang Z; Li S; Wang R; Guo L; Xu D; Zhang T; Xu Y; Wang W; Wang M; Gan Z; Wang X
    Mol Med; 2020 Jun; 26(1):54. PubMed ID: 32503411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fructose as a key player in the development of fatty liver disease.
    Basaranoglu M; Basaranoglu G; Sabuncu T; Sentürk H
    World J Gastroenterol; 2013 Feb; 19(8):1166-72. PubMed ID: 23482247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liver sympathetic denervation reverses obesity-induced hepatic steatosis.
    Hurr C; Simonyan H; Morgan DA; Rahmouni K; Young CN
    J Physiol; 2019 Sep; 597(17):4565-4580. PubMed ID: 31278754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lycopus lucidus Turcz. ex Benth. Attenuates free fatty acid-induced steatosis in HepG2 cells and non-alcoholic fatty liver disease in high-fat diet-induced obese mice.
    Lee MR; Yang HJ; Park KI; Ma JY
    Phytomedicine; 2019 Mar; 55():14-22. PubMed ID: 30668424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A retinoic acid receptor β2 agonist reduces hepatic stellate cell activation in nonalcoholic fatty liver disease.
    Trasino SE; Tang XH; Jessurun J; Gudas LJ
    J Mol Med (Berl); 2016 Oct; 94(10):1143-1151. PubMed ID: 27271256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis.
    Koo SH
    Clin Mol Hepatol; 2013 Sep; 19(3):210-5. PubMed ID: 24133660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the β
    Arif E; Solanki AK; Rahman B; Wolf B; Schnellmann RG; Nihalani D; Lipschutz JH
    Pharmacol Rep; 2024 Jun; 76(3):612-621. PubMed ID: 38668812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of PHLPP2 by KCTD17, via a Glucagon-Dependent Pathway, Promotes Hepatic Steatosis.
    Kim K; Ryu D; Dongiovanni P; Ozcan L; Nayak S; Ueberheide B; Valenti L; Auwerx J; Pajvani UB
    Gastroenterology; 2017 Dec; 153(6):1568-1580.e10. PubMed ID: 28859855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acyl-Coenzyme A Thioesterase 9 Traffics Mitochondrial Short-Chain Fatty Acids Toward De Novo Lipogenesis and Glucose Production in the Liver.
    Steensels S; Qiao J; Zhang Y; Maner-Smith KM; Kika N; Holman CD; Corey KE; Bracken WC; Ortlund EA; Ersoy BA
    Hepatology; 2020 Sep; 72(3):857-872. PubMed ID: 32498134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absence of adipose triglyceride lipase protects from hepatic endoplasmic reticulum stress in mice.
    Fuchs CD; Claudel T; Kumari P; Haemmerle G; Pollheimer MJ; Stojakovic T; Scharnagl H; Halilbasic E; Gumhold J; Silbert D; Koefeler H; Trauner M
    Hepatology; 2012 Jul; 56(1):270-80. PubMed ID: 22271167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Downregulation of miR-192 causes hepatic steatosis and lipid accumulation by inducing SREBF1: Novel mechanism for bisphenol A-triggered non-alcoholic fatty liver disease.
    Lin Y; Ding D; Huang Q; Liu Q; Lu H; Lu Y; Chi Y; Sun X; Ye G; Zhu H; Wei J; Dong S
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Sep; 1862(9):869-882. PubMed ID: 28483554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The American lifestyle-induced obesity syndrome diet in male and female rodents recapitulates the clinical and transcriptomic features of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis.
    Harris SE; Poolman TM; Arvaniti A; Cox RD; Gathercole LL; Tomlinson JW
    Am J Physiol Gastrointest Liver Physiol; 2020 Sep; 319(3):G345-G360. PubMed ID: 32755310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Niacin Ameliorates Hepatic Steatosis by Inhibiting De Novo Lipogenesis Via a GPR109A-Mediated PKC-ERK1/2-AMPK Signaling Pathway in C57BL/6 Mice Fed a High-Fat Diet.
    Ye L; Cao Z; Lai X; Shi Y; Zhou N
    J Nutr; 2020 Apr; 150(4):672-684. PubMed ID: 31858105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermittent restraint-induced sympathetic activation attenuates hepatic steatosis and inflammation in a high-fat diet-fed mouse model.
    Lee SB; Kim HG; Lee JS; Kim WY; Lee MM; Kim YH; Lee JO; Kim HS; Son CG
    Am J Physiol Gastrointest Liver Physiol; 2019 Dec; 317(6):G811-G823. PubMed ID: 31604029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amelioration of non-alcoholic fatty liver disease by targeting adhesion G protein-coupled receptor F1 (
    Wu M; Lo TH; Li L; Sun J; Deng C; Chan KY; Li X; Yeh ST; Lee JTH; Lui PPY; Xu A; Wong CM
    Elife; 2023 Aug; 12():. PubMed ID: 37580962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. JTP-103237, a monoacylglycerol acyltransferase inhibitor, prevents fatty liver and suppresses both triglyceride synthesis and de novo lipogenesis.
    Okuma C; Ohta T; Tadaki H; Ishigure T; Sakata S; Taniuchi H; Sano R; Hamada H; Kume S; Nishiu J; Kakutani M
    J Pharmacol Sci; 2015 Jul; 128(3):150-7. PubMed ID: 26215699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.