These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 34029201)
1. Predicting Brain Age Using Machine Learning Algorithms: A Comprehensive Evaluation. Beheshti I; Ganaie MA; Paliwal V; Rastogi A; Razzak I; Tanveer M IEEE J Biomed Health Inform; 2022 Apr; 26(4):1432-1440. PubMed ID: 34029201 [TBL] [Abstract][Full Text] [Related]
2. Regression Algorithm of Bone Age Estimation of Knee-joint Based on Principal Component Analysis and Support Vector Machine. Lei YY; Shen YS; Wang YH; Zhao H Fa Yi Xue Za Zhi; 2019 Apr; 35(2):194-199. PubMed ID: 31135114 [TBL] [Abstract][Full Text] [Related]
3. Systematic evaluation of machine learning algorithms for neuroanatomically-based age prediction in youth. Modabbernia A; Whalley HC; Glahn DC; Thompson PM; Kahn RS; Frangou S Hum Brain Mapp; 2022 Dec; 43(17):5126-5140. PubMed ID: 35852028 [TBL] [Abstract][Full Text] [Related]
4. Improving Individual Brain Age Prediction Using an Ensemble Deep Learning Framework. Kuo CY; Tai TM; Lee PL; Tseng CW; Chen CY; Chen LK; Lee CK; Chou KH; See S; Lin CP Front Psychiatry; 2021; 12():626677. PubMed ID: 33833699 [TBL] [Abstract][Full Text] [Related]
5. Comparison of Machine Learning Models for Brain Age Prediction Using Six Imaging Modalities on Middle-Aged and Older Adults. Xiong M; Lin L; Jin Y; Kang W; Wu S; Sun S Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050682 [TBL] [Abstract][Full Text] [Related]
7. Bias-adjustment in neuroimaging-based brain age frameworks: A robust scheme. Beheshti I; Nugent S; Potvin O; Duchesne S Neuroimage Clin; 2019; 24():102063. PubMed ID: 31795063 [TBL] [Abstract][Full Text] [Related]
8. Prediction of cognitive impairment via deep learning trained with multi-center neuropsychological test data. Kang MJ; Kim SY; Na DL; Kim BC; Yang DW; Kim EJ; Na HR; Han HJ; Lee JH; Kim JH; Park KH; Park KW; Han SH; Kim SY; Yoon SJ; Yoon B; Seo SW; Moon SY; Yang Y; Shim YS; Baek MJ; Jeong JH; Choi SH; Youn YC BMC Med Inform Decis Mak; 2019 Nov; 19(1):231. PubMed ID: 31752864 [TBL] [Abstract][Full Text] [Related]
9. Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method. Huang JC; Tsai YC; Wu PY; Lien YH; Chien CY; Kuo CF; Hung JF; Chen SC; Kuo CH Comput Methods Programs Biomed; 2020 Oct; 195():105536. PubMed ID: 32485511 [TBL] [Abstract][Full Text] [Related]
10. Machine learning algorithms predict within one size of the final implant ultimately used in total knee arthroplasty with good-to-excellent accuracy. Kunze KN; Polce EM; Patel A; Courtney PM; Sporer SM; Levine BR Knee Surg Sports Traumatol Arthrosc; 2022 Aug; 30(8):2565-2572. PubMed ID: 35024899 [TBL] [Abstract][Full Text] [Related]
11. The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features. Cui Z; Gong G Neuroimage; 2018 Sep; 178():622-637. PubMed ID: 29870817 [TBL] [Abstract][Full Text] [Related]
12. Comparing different algorithms for the course of Alzheimer's disease using machine learning. Tang X; Liu J Ann Palliat Med; 2021 Sep; 10(9):9715-9724. PubMed ID: 34628897 [TBL] [Abstract][Full Text] [Related]
13. Robust Brain Age Estimation Based on sMRI via Nonlinear Age-Adaptive Ensemble Learning. Zhang Z; Jiang R; Zhang C; Williams B; Jiang Z; Li CT; Chazot P; Pavese N; Bouridane A; Beghdadi A IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2146-2156. PubMed ID: 35830403 [TBL] [Abstract][Full Text] [Related]
14. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches. Khalid SG; Zhang J; Chen F; Zheng D J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819 [TBL] [Abstract][Full Text] [Related]
15. Plasma d-glutamate levels for detecting mild cognitive impairment and Alzheimer's disease: Machine learning approaches. Chang CH; Lin CH; Liu CY; Huang CS; Chen SJ; Lin WC; Yang HT; Lane HY J Psychopharmacol; 2021 Mar; 35(3):265-272. PubMed ID: 33586518 [TBL] [Abstract][Full Text] [Related]
16. Brain age prediction in schizophrenia: Does the choice of machine learning algorithm matter? Lee WH; Antoniades M; Schnack HG; Kahn RS; Frangou S Psychiatry Res Neuroimaging; 2021 Apr; 310():111270. PubMed ID: 33714090 [TBL] [Abstract][Full Text] [Related]
17. Scoring algorithms for a computer-based cognitive screening tool: An illustrative example of overfitting machine learning approaches and the impact on estimates of classification accuracy. Ursenbach J; O'Connell ME; Neiser J; Tierney MC; Morgan D; Kosteniuk J; Spiteri RJ Psychol Assess; 2019 Nov; 31(11):1377-1382. PubMed ID: 31414853 [TBL] [Abstract][Full Text] [Related]
18. Use of Multiprognostic Index Domain Scores, Clinical Data, and Machine Learning to Improve 12-Month Mortality Risk Prediction in Older Hospitalized Patients: Prospective Cohort Study. Woodman RJ; Bryant K; Sorich MJ; Pilotto A; Mangoni AA J Med Internet Res; 2021 Jun; 23(6):e26139. PubMed ID: 34152274 [TBL] [Abstract][Full Text] [Related]
19. Machine Learning Models for the Hearing Impairment Prediction in Workers Exposed to Complex Industrial Noise: A Pilot Study. Zhao Y; Li J; Zhang M; Lu Y; Xie H; Tian Y; Qiu W Ear Hear; 2019; 40(3):690-699. PubMed ID: 30142102 [TBL] [Abstract][Full Text] [Related]
20. The Prediction of Sinter Drums Strength Using Hybrid Machine Learning Algorithms. Ren X; Yang B; Luo N; Li J; Li Y; Xue T; Yang A Comput Intell Neurosci; 2022; 2022():4790736. PubMed ID: 35845868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]