These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

594 related articles for article (PubMed ID: 34029205)

  • 21. Structural and functional conservation of the programmed -1 ribosomal frameshift signal of SARS coronavirus 2 (SARS-CoV-2).
    Kelly JA; Olson AN; Neupane K; Munshi S; San Emeterio J; Pollack L; Woodside MT; Dinman JD
    J Biol Chem; 2020 Jul; 295(31):10741-10748. PubMed ID: 32571880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Programmed ribosomal frameshifting in decoding the SARS-CoV genome.
    Baranov PV; Henderson CM; Anderson CB; Gesteland RF; Atkins JF; Howard MT
    Virology; 2005 Feb; 332(2):498-510. PubMed ID: 15680415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure-altering mutations of the SARS-CoV-2 frameshifting RNA element.
    Schlick T; Zhu Q; Jain S; Yan S
    Biophys J; 2021 Mar; 120(6):1040-1053. PubMed ID: 33096082
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Length-dependent motions of SARS-CoV-2 frameshifting RNA pseudoknot and alternative conformations suggest avenues for frameshifting suppression.
    Yan S; Zhu Q; Jain S; Schlick T
    Nat Commun; 2022 Jul; 13(1):4284. PubMed ID: 35879278
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein-directed ribosomal frameshifting temporally regulates gene expression.
    Napthine S; Ling R; Finch LK; Jones JD; Bell S; Brierley I; Firth AE
    Nat Commun; 2017 Jun; 8():15582. PubMed ID: 28593994
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural dynamics of single SARS-CoV-2 pseudoknot molecules reveal topologically distinct conformers.
    Neupane K; Zhao M; Lyons A; Munshi S; Ileperuma SM; Ritchie DB; Hoffer NQ; Narayan A; Woodside MT
    Nat Commun; 2021 Aug; 12(1):4749. PubMed ID: 34362921
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of the SARS-CoV-2 Frameshift Stimulatory Element with an Upstream Multibranch Loop.
    Peterson JM; Becker ST; O'Leary CA; Juneja P; Yang Y; Moss WN
    Biochemistry; 2024 May; 63(10):1287-1296. PubMed ID: 38727003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The short isoform of the host antiviral protein ZAP acts as an inhibitor of SARS-CoV-2 programmed ribosomal frameshifting.
    Zimmer MM; Kibe A; Rand U; Pekarek L; Ye L; Buck S; Smyth RP; Cicin-Sain L; Caliskan N
    Nat Commun; 2021 Dec; 12(1):7193. PubMed ID: 34893599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of Viral Programmed Ribosomal Frameshifting and Stop Codon Readthrough by the Host Restriction Factor Shiftless.
    Napthine S; Hill CH; Nugent HCM; Brierley I
    Viruses; 2021 Jun; 13(7):. PubMed ID: 34202160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetics of ribosomal pausing during programmed -1 translational frameshifting.
    Lopinski JD; Dinman JD; Bruenn JA
    Mol Cell Biol; 2000 Feb; 20(4):1095-103. PubMed ID: 10648594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural basis for backtracking by the SARS-CoV-2 replication-transcription complex.
    Malone B; Chen J; Wang Q; Llewellyn E; Choi YJ; Olinares PDB; Cao X; Hernandez C; Eng ET; Chait BT; Shaw DE; Landick R; Darst SA; Campbell EA
    Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33883267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies of the astrovirus signal that induces (-1) ribosomal frameshifting.
    Lewis TL; Matsui SM
    Adv Exp Med Biol; 1997; 412():323-30. PubMed ID: 9192037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting.
    Chen X; Chamorro M; Lee SI; Shen LX; Hines JV; Tinoco I; Varmus HE
    EMBO J; 1995 Feb; 14(4):842-52. PubMed ID: 7882986
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeting Ribosomal Frameshifting as an Antiviral Strategy: From HIV-1 to SARS-CoV-2.
    Anokhina VS; Miller BL
    Acc Chem Res; 2021 Sep; 54(17):3349-3361. PubMed ID: 34403258
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An analysis by metabolic labelling of the encephalomyocarditis virus ribosomal frameshifting efficiency and stimulators.
    Ling R; Firth AE
    J Gen Virol; 2017 Aug; 98(8):2100-2105. PubMed ID: 28786807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of the roles of tRNA structure, ribosomal protein L9, and the bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA.
    Herr AJ; Nelson CC; Wills NM; Gesteland RF; Atkins JF
    J Mol Biol; 2001 Jun; 309(5):1029-48. PubMed ID: 11399077
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-wide CRISPR screens identify noncanonical translation factor eIF2A as an enhancer of SARS-CoV-2 programmed -1 ribosomal frameshifting.
    Wei LH; Sun Y; Guo JU
    Cell Rep; 2023 Aug; 42(8):112987. PubMed ID: 37581984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. mRNA-Mediated Duplexes Play Dual Roles in the Regulation of Bidirectional Ribosomal Frameshifting.
    Huang WP; Cho CP; Chang KY
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30518074
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Footprinting analysis of BWYV pseudoknot-ribosome complexes.
    Mazauric MH; Leroy JL; Visscher K; Yoshizawa S; Fourmy D
    RNA; 2009 Sep; 15(9):1775-86. PubMed ID: 19625386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40s ribosomal subunit.
    Spahn CM; Kieft JS; Grassucci RA; Penczek PA; Zhou K; Doudna JA; Frank J
    Science; 2001 Mar; 291(5510):1959-62. PubMed ID: 11239155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.