These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34029459)

  • 41. Chimeric thermostable DNA polymerases with reverse transcriptase and attenuated 3'-5' exonuclease activity.
    Schönbrunner NJ; Fiss EH; Budker O; Stoffel S; Sigua CL; Gelfand DH; Myers TW
    Biochemistry; 2006 Oct; 45(42):12786-95. PubMed ID: 17042497
    [TBL] [Abstract][Full Text] [Related]  

  • 42. TNA synthesis by DNA polymerases.
    Chaput JC; Szostak JW
    J Am Chem Soc; 2003 Aug; 125(31):9274-5. PubMed ID: 12889939
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The emerging world of synthetic genetics.
    Chaput JC; Yu H; Zhang S
    Chem Biol; 2012 Nov; 19(11):1360-71. PubMed ID: 23177191
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Directed polymerase evolution.
    Chen T; Romesberg FE
    FEBS Lett; 2014 Jan; 588(2):219-29. PubMed ID: 24211837
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermostability Trends of TNA:DNA Duplexes Reveal Strong Purine Dependence.
    Lackey HH; Peterson EM; Chen Z; Harris JM; Heemstra JM
    ACS Synth Biol; 2019 May; 8(5):1144-1152. PubMed ID: 30964657
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Towards XNA nanotechnology: new materials from synthetic genetic polymers.
    Pinheiro VB; Holliger P
    Trends Biotechnol; 2014 Jun; 32(6):321-8. PubMed ID: 24745974
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Engineered Protein Machines: Emergent Tools for Synthetic Biology.
    Glasscock CJ; Lucks JB; DeLisa MP
    Cell Chem Biol; 2016 Jan; 23(1):45-56. PubMed ID: 26933735
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recognition of threosyl nucleotides by DNA and RNA polymerases.
    Kempeneers V; Vastmans K; Rozenski J; Herdewijn P
    Nucleic Acids Res; 2003 Nov; 31(21):6221-6. PubMed ID: 14576309
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins.
    Vanmeert M; Razzokov J; Mirza MU; Weeks SD; Schepers G; Bogaerts A; Rozenski J; Froeyen M; Herdewijn P; Pinheiro VB; Lescrinier E
    Nucleic Acids Res; 2019 Jul; 47(13):7130-7142. PubMed ID: 31334814
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DNA polymerase-mediated DNA synthesis on a TNA template.
    Chaput JC; Ichida JK; Szostak JW
    J Am Chem Soc; 2003 Jan; 125(4):856-7. PubMed ID: 12537469
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In Vitro Selection of an ATP-Binding TNA Aptamer.
    Zhang L; Chaput JC
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32933142
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A general strategy for expanding polymerase function by droplet microfluidics.
    Larsen AC; Dunn MR; Hatch A; Sau SP; Youngbull C; Chaput JC
    Nat Commun; 2016 Apr; 7():11235. PubMed ID: 27044725
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A short adaptive path from DNA to RNA polymerases.
    Cozens C; Pinheiro VB; Vaisman A; Woodgate R; Holliger P
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8067-72. PubMed ID: 22566643
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Activation of Innate Immune Responses by a CpG Oligonucleotide Sequence Composed Entirely of Threose Nucleic Acid.
    Lange MJ; Burke DH; Chaput JC
    Nucleic Acid Ther; 2019 Feb; 29(1):51-59. PubMed ID: 30526333
    [TBL] [Abstract][Full Text] [Related]  

  • 55. RNA-Catalyzed Polymerization of Deoxyribose, Threose, and Arabinose Nucleic Acids.
    Horning DP; Bala S; Chaput JC; Joyce GF
    ACS Synth Biol; 2019 May; 8(5):955-961. PubMed ID: 31042360
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Scalable Synthesis of α-L-Threose Nucleic Acid Monomers.
    Sau SP; Fahmi NE; Liao JY; Bala S; Chaput JC
    J Org Chem; 2016 Mar; 81(6):2302-7. PubMed ID: 26895480
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis and Polymerase Recognition of Threose Nucleic Acid Triphosphates Equipped with Diverse Chemical Functionalities.
    Li Q; Maola VA; Chim N; Hussain J; Lozoya-Colinas A; Chaput JC
    J Am Chem Soc; 2021 Oct; 143(42):17761-17768. PubMed ID: 34637287
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selection of 2'-Deoxy-2'-Fluoroarabino Nucleic Acid (FANA) Aptamers That Bind HIV-1 Integrase with Picomolar Affinity.
    Rose KM; Alves Ferreira-Bravo I; Li M; Craigie R; Ditzler MA; Holliger P; DeStefano JJ
    ACS Chem Biol; 2019 Oct; 14(10):2166-2175. PubMed ID: 31560515
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthetic Life with Alternative Nucleic Acids as Genetic Materials.
    Nie P; Bai Y; Mei H
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32751873
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transliteration of synthetic genetic enzymes.
    Wang Y; Liu X; Shehabat M; Chim N; Chaput JC
    Nucleic Acids Res; 2021 Nov; 49(20):11438-11446. PubMed ID: 34634814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.